
Security and Certificates!
REN-ISAC TechBurst!

9AM Pacific, June 30th, 2011!

Joe St Sauver, Ph.D. !
joe@uoregon.edu or joe@internet2.edu!

Internet2 Nationwide Security Programs Manager!
http://pages.uoregon.edu/joe/techburst/!

Disclaimer: The opinions expressed in this presentation are those of the
author and may not represent the opinion of any other entity.!
Sharing Terms: GREEN. This document may be shared with anyone,
including those who may be outside the REN-ISAC trust community.!
Format: This talk is provided in a detailed format to facilitate indexing by
search engines, to insure accessibility for the hearing impaired, and to
assist non-native English speakers who may view this presentation later.!

I. Motivation!

2!

Bringing Everyone To A Common Foundation!

•  Let's begin by talking a little about web security. !
•  I know that the material I'm going to begin with will be

review for many of you; unfortunately the material that
may be review for you probably won't be review for
others. Since folks have my permission to share this talk
broadly, including with their web admins and system
administrator folks, I want to get everyone to a common
level before we move forward. !

•  I appreciate your patience for a few slides. This talk will
pick up technical "velocity" as we move along, although I'm
going to try to keep this talk approachable for everyone.!

•  Anyhow, our first questions are, and probably must be, !
"Why are we particularly interested in web site security?"
and "Why focus on this issue now?"!

3!

Factor 1: The Web Is A Common Bearer Service!

•  While dedicated clients using specialized network protocols
were once common, these days virtually all enterprise
network applications are accessed via a common bearer
service: (almost) "everything is over the Web."!

•  This is true for your users' email, their calendaring and
scheduling, campus administrative applications, high
performance computing (via web science gateways), and
even campus ecommerce activities (whether that's buying a
ten buck tee shirt as part of a departmental fund raiser
or paying $10,000 in tuition for the term).!

•  When web applications involve sensitive data (such as
account usernames and passwords, FERPA- or HIPAA-
covered data, or PII such as credit card numbers), that
web activity will normally occur over a SSL/TLS-secured
connection.!

4!

Factor 2: Web Apps Are A Prime Focus For Attacks!

•  http://www.sans.org/top-cyber-security-risks/summary.php !

Priority Two: Internet-facing web sites that are vulnerable.!
"Attacks against web applications constitute more than 60% of the total
attack attempts observed on the Internet. These vulnerabilities are
being exploited widely to convert trusted web sites into malicious
websites serving content that contains client-side exploits. Web
application vulnerabilities such as SQL injection and Cross-Site
Scripting flaws in open-source as well as custom-built applications
account for more than 80% of the vulnerabilities being discovered.
Despite the enormous number of attacks and despite widespread
publicity about these vulnerabilities, most web site owners fail to scan
effectively for the common flaws and become unwitting tools used by
criminals to infect the visitors that trusted those sites to provide a
safe web experience.!

"[Priority One? "Client-side software that remains unpatched."]!
5!

Factor 3: Many Education Web Sites Remain Vulnerable!

•  "Most Websites Vulnerable to Attack, WhiteHat Study Says"* !

"The average website has serious vulnerabilities more than nine !
"months of the year, according to a new report [...]!

"Heavily regulated industries like healthcare and banking have the
"lowest rates, yet 14 and 16 percent, respectively, of the sites in those
"industries had serious vulnerabilities throughout the year. [...]!

"The education industry has the dubious honor of leading the category !
"-- 78 percent of [education] sites [...] were vulnerable [...]!

"----!
"* www.darkreading.com/vulnerability-management/167901026/
"security/application-security/229300525/most-websites-vulnerable-to-
"attack-whitehat-study-says.html (March 8th, 2011)!

6!

Factor 4: Some May Mistakenly Believe That The !
Sheer Presence of An "https" Prefix In A URL!

Equates to Overall Web Site "Security"!
•  Many users have been trained to check to see if web sites use

"https" (SSL/TLS) before they trust personally identifiable !
information (such as credit card numbers) to a web site.!

•  SSL/TLS support *IS* an important part of securing a web site, but
not all SSL/TLS implementations are the same, and just having some
sort of SSL/TLS support, by and of itself, is not enough to make your
website secure. (SSL/TLS support is "necessary but not sufficient," as
mathematicians might say). !

•  We need to "step up our game" when it comes to web site security in
general (while also improving how we deploy SSL/TLS in particular).!

•  Confusion on this point is similar to confusion about DNSSEC: while
DNSSEC is needed to eliminate some DNS-related vulnerabilities, and it!
is an important thing for sites to do, DNSSEC does NOT fix all potential !
DNS vulnerabilities (nor does it pretend to do so). Similarly, SSL/TLS
helps mitigate some web security vulnerabilities, but is not a magic pill!

7!

Factor 5: There Is (Appropriate!) Increasing !
Public Scrutiny Of Internet SSL/TLS Usage!

8!

Factor 6: Internet2/InCommon Now Has!
Its Own Certificate Service!

•  As part of this Techburst, my colleague Jack Seuss, CIO !
of the University of Maryland Baltimore County, has (or
will) brief you on the new Internet2/InCommon certificate
service (see http://www.incommon.org/cert/).!

•  Because of that new cert service, those of us involved
with Internet2 Security have become motivated to look
more closely at the "state of the practice" when it comes
to certificate use, both for routine uses (such as for
securing web servers), as well as for less common
scenarios (such as deployment of "personal certs")!

•  That said, let me emphasize that the opinions expressed !
in this talk represent my own point of view, and not
necessarily those of my colleague, nor of Internet2, !
the University of Oregon, or any other entity.!

9!

Bottom Line!
•  We think the time may be ripe for many sites to improve their

certificate-related practices, particularly as they pertain to their web
site. !

•  We also think that it may be time for the community to begin to think
about other possible uses for certificates, such as two factor
authentication & S/MIME signed email. !

•  We hope you share our interest in these topics, and we view your
participation in this REN-ISAC Techburst as a very positive tangible
sign in that regard. !

•  We also hope you'll freely share these slides with your web server
system administrators and other campus personnel who may be
interested.!

•  Now that we've briefly established some web-related introductory
motivational material, let's also quickly talk a little about SSL/TLS.!

•  But first, are there any burning questions so far? (We'll try to
remember to check for questions at the end of each major section of
this talk)!

10!

II. A Quick Hand-Waving !
Introduction To SSL/TLS!

11!

What Is SSL/TLS?!
•  The "Secure Socket Layer" ("SSL") and "Transport Layer

Security" ("TLS") protocols are cryptographic technologies
that are used, along with certificates, to help secure !
e-commerce websites and other Internet resources.!

•  SSL is a relatively old technology (at least by Internet
historical standards), dating to 1994-1995 with the public
release of SSL version 2.0* by Netscape... For context,
Mosaic, the first popular graphical web browser, was
created at NCSA and released in 1993.!

•  SSL has continued to evolve over time:!
-- 1996: SSL version 3.0!
-- 1999: TLS 1.0 (aka SSL 3.1) <-- the latest "universally !
-- 2006: TLS 1.1 (aka SSL 3.2)" " supported" version,!
-- 2008: TLS 1.2 (aka SSL 3.3)" " believe it or not!!
"* SSL version 1 was reportedly never publicly released. !

12!

"So Tell Us About The Technical Differences Between
the Versions of TLS, and How the TLS Handshake
Process Works, and the TLS Record Format and..." !

•  No.!

•  While it is sometime considered de rigueur to do a "deep
dive" with state diagrams and record layouts as part of a
technical briefing, we don't have time to cover that today,
and frankly you really don't need to know the protocol
level details for our purposes.!

•  If we were doing a whole term-long class devoted to
cryptography, that would be a different matter, but !
our time together today is short and I want to focus on
stuff that's important from an operational security point of
view. For example, what does SSL/TLS really do for us?!

13!

What SSL/TLS Does For Sites and Users!
•  By using SSL/TLS secured web sites, site administrators

and their users get three potentially quite useful things:!

-- network traffic gets protected from eavesdropping !
-- network traffic gets protected from tampering, and!
-- users get protected from accidentally going to a !
 look-alike counterfeit site (assuming the SSL/TLS!
 certificate being used has been issued by a source!
 that adequately validates the identity of the party!
 to whom that certificate has been issued, and some !
 other conditions are also satisfied)!

•  A tremendous amount of detail underlies those three
fundamental objectives. You'll be able to see this if you !
do bother reading the SSL/TLS protocol-level RFCs.!

14!

By the (RFC) Numbers!
•  RFC 2560, "X.509 Internet Public Key Infrastructure Online Certificate

Status Protocol – OCSP," http://tools.ietf.org/html/rfc2560!
•  RFC 5246, "The Transportation Layer Security (TLS) Protocol, Version

1.2," http://tools.ietf.org/html/rfc5246!
•  RFC 5280, "Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile,"!
http://tools.ietf.org/html/rfc5280!

•  RFC 5746, "Transport Layer Security (TLS) Renegotiation Indication
Extension," http://tools.ietf.org/html/rfc5746!

•  RFC 5878, "Transport Layer Security (TLS) Authorization Extensions,"
http://tools.ietf.org/html/rfc5878!

•  RFC 6066, "Transport Layer Security (TLS) Extensions: Extension
Definitions," http://tools.ietf.org/html/rfc6066!

•  RFC 6176, "Prohibiting Secure Sockets Layer (SSL) Version 2.0," !
http://tools.ietf.org/html/rfc6176!

•  Plus bits and pieces in other RFCs and errata to most of the above...
Note that these documents are NOT light/easy reading.!

15!

Stating the Obvious!
•  Many users/system administrators/security people never

have (and never will!) read and internalize those RFCs, in
part because understanding cryptographic protocols often
require a degree of comfort with advanced mathematics.!

•  If you do want to read at least a little about SSL/TLS,
Wikipedia actually has some nice introductory articles:!

en.wikipedia.org/wiki/Transport_Layer_Security!
en.wikipedia.org/wiki/Comparison_of_TLS_Implementations!

•  Fortunately, you really don't need an in-depth !
understanding of SSL/TLS protocols if you're not doing
protocol-level development work. There's an active
community of very well-regarded cryptographers and
coders that are "carrying the water" for us in this area.!

16!

Practitioner-Level Crypto!
•  Practically speaking, for most practitioners, SSL/TLS "is"

what Apache 2.x (and OpenSSL) say it "is."!
•  Why? As of June 2011, Apache currently has a ~65%

market share compared to its next-closest competitor,
Microsoft, at roughly 17%. See http://news.netcraft.com/!
archives/category/web-server-survey/!

•  Given that level of market dominance, we will largely focus
on Apache (running on Unix) when we discuss web servers
during the remainder of this talk. !

•  Because many SSL/TLS issues come back to how Apache
was installed and configured, let's now review how one
actually does that installation and configuration.!

17!

"But Joe! We already know how to install and
configure a web server! You're wasting our time!"!

[or alternatively] !

"Why are you telling *us* how to install Apache???
We're security guys, *not* sysadmins!"!

18!

A Quick Reality Check!
•  I don't want to point fingers at any particular site.

Everyone's doing the best that they can with the
resources they have available. Unfortunately, though,
sometimes things just aren't where they need to be.!

•  Checking a sample of higher ed institutions with a popular
SSL site checking tool from Qualys SSLLabs, I empirically
observed higher ed sites that were "all over the map"
when it came to their web server security.!

•  I encourage YOU to check the website(s) YOU care about
at https://www.ssllabs.com/ssldb/index.html (note that you
can "hide" your scores if you're worried you'll do badly!)!

•  If you get a 100% score on that evaluation, I apologize in
advance for wasting your time, however, if your site or
sites gets a lower mark, maybe we should take a couple of
minutes to review how to install Apache?!

19!

 The Higher Ed SSLlab Score Distribution for 119 Dot Edus!
 "" "" "" "" "" "" "" "" "Cumulative "Cumulative!
score "Frequency "Percent "" "Frequency "Percent!
--!
 0" "7 "" "5.88 " "7 "" "5.88" "" "<-- F (score<20)!
 48 "10 "" "8.40 "17 " "14.29 "" "<-- D (score>=20)!
 52 "29 "" "24.37 " "46 " ""38.66 " "<-- C (score>=50)!
 57 "4 "" "3.36 "50 " "42.02!
 60 "1 "" "0.84 "51 " "42.86!
 61" "19 "" "15.97 70 " "58.82!
 62 "1 "" "0.84 "71 " ""59.66!
 73 "8 "" "6.72 "79 " "66.39 " ""<-- B (score>=65)!
 76" "1 "" "0.84 "80 " "67.23 " "!
 81" "5 "" "4.20 "85 " "71.43 " "<-- A (score>=80)!
 84 "1 "" "0.84 "86 " "72.27!
 85 "25 "" "21.01 "111 " "93.28!
 86 "1 "" "0.84 "112 " "94.12!
 88 "7 "" "5.88 "119 " "100.00!

 Mean=62.8!
 Q3 (75th percentile)=85, Median (50th percentile)=61, Q1 (25th percentile)=52! 20!

 Some Additional Higher Ed SSLlab Results...!
 Does the server permit SSL 2.0? (It shouldn't – SSL2.0 is insecure):!

NO ""76 "(63.87%)!
YES "43 "(36.13%)!

Does the server do renegotiation securely? (insecure renegotiation is also bad)!
YES "" "" "" "" "54 (45.38%)!
BLOCKS ENTIRELY "" "18 (15.13%)!
NO (VULNERABLE) "" "47 (39.50%)!

What's the minimum cipher length acceptable to the server? (128 bit or better is good)!
40 bits "" "" "" "" "63 (52.94%)!
56 bits "" "" "" "" "12 (10.08%)!
128 bits "" "" "" "" "41 (34.45%)!
168 bits "" "" "" "" "1 (0.84%)!
even anonymous ciphers OK "2 (1.68%)!

Server cert signature length? (2048 bit is now recommended)!
768 bit "" "" "" "" "1 (0.84%)!
1024 bit "" "" "" "" "65 (54.62%)!
2048 bit "" "" "" "" "53 (44.54%)!

And there's a lot more data out there if you look at the sites you're responsible for...!
21!

(Please) Don't Shoot The Messenger!
•  I'm NOT trying to prove that I'm "smarter" than anyone

else or that anyone's done a "bad job" with their web site. !
•  I'll freely concede that EVERYONE probably knows more

about rolling out both regular and secure web sites than I
do.!

•  On the other hand, I do want people to make an informed
objective assessment of where their web sites are at, and
to have some concrete ideas for how they might be able to
improve them.!

•  I *would* like us to work on this cooperatively, as a
community.!

•  If I had to describe ONE THING that I'd like you to do
after today's TechBurst, it would be to check and fix any
security issues with your school's secure web server(s).!

22!

III. Installing Apache!

23!

Apache 1.x vs. Apache 2.x!
•  There are two major Apache release trains, 1.x and 2.x!
•  While Apache 1.3.42 was released in February 2010 (and thus may feel

relatively "current"), it was (and is) the final release in the Apache 1.x
family. If you're still using any 1.x version of Apache (and some people
in higher ed *ARE*), or you're using anything other than the latest
production 2.x release, you should upgrade (unless some "application-
related constraint" makes this "impossible" [cough]). At the time I
prepared these slides in late June 2011, the most recent production
version of Apache 2.x was 2.2.19. !

•  To see what version you are actually running, on most Unix systems
look for the full path of the httpd that's running in the output from!

% ps auxw | grep http (some sites need ef instead of auxw) !

For example, your httpd might be at /opt/local/apache2/bin/httpd!

You can then see what version you're running by saying:!

% /opt/local/apache2/bin/httpd -version! 24!

 Versions Seen In Higher Ed SSLlab Results... Are All Secure?!
apache (version not specified)" ""29 (24.37%)!
apache 1.3.26 "" "" "" "" "1 (0.84%)!
apache 1.3.28 "" "" "" "" "1 (0.84%)!
apache 1.3.37 "" "" "" "" "3 (2.52%)!
apache 1.3.39 "" "" "" "" "1 (0.84%)!
apache 1.3.41 "" "" "" "" "1 (0.84%)!
apache 2.0.46"" "" "" "" "1 (0.84%)!
apache 2.0.50" "" "" "" "1 (0.84%)!
apache 2.0.52" "" "" "" ""1 (0.84%)!
apache 2.0.52 (rh) "" "" "" ""5 (4.20%)!
apache 2.0.54 (fedora) "" "" ""1 (0.84%)!
apache 2.0.59" "" "" "" "1 (0.84%)!
apache 2.0.63" "" "" "" "1 (0.84%)!
apache 2.x "" "" "" "" "(omitted here)!
[...]!
iis/6.0 "" "" "" "" "" "13 (10.92%)!
iis/7.0 "" "" "" "" "" "2 (1.68%)!
iis/7.5 "" "" "" "" "" "2 (1.68%)!
[plus some other really odd corner cases]!

25!

Beware Multiple Parallel httpd Installations!
•  Some of you may wonder why I bothered to have you

check to see the full path for the httpd you're running.!
•  The answer is that it can (unfortunately) be quite common

for a system to have MULTIPLE parallel httpd installations,
and the version that you see by default from an
interactive terminal session may (or may not) be the same
version that's currently running or the same version that's
normally launched at boot time (due to path issues, etc.)!

•  While it may be tempting to dismiss any installations in
"wrong" places as "stupid," different distros may put the
emphasis on different things (e.g., limiting "contamination"
to the minimum number of file systems, obtaining the best
system performance, protecting critical file systems from
accidentally filling up, preserving a still-required vendor-
pre-installed version, isolating sensitive config files, etc.)!

26!

Some Default File System Layouts For Apache!
•  A nice summary of some (but not all) Apache file system

layouts can be found at!

http://wiki.apache.org/httpd/DistrosDefaultLayout!

•  Just to make EVERYONE equally unhappy, we'll use the
default file location /opt/local/apache2 , which isn't used
by any of the major vendors mentioned in the preceding
file. !

•  Adjust the filespecs I show in the slides ahead according
to the layout that your distro/installation uses.!

27!

Your Pre-Installed Version of Apache!
•  Because of its inherent modularity, potentially large

number of dependencies, and differing file system layouts
on different operating systems, Apache and related bits and
pieces can sometimes prove to be a complex product to
build from sources, install, and maintain. !

•  Fortunately, many popular operating systems come with a
version of Apache pre-installed by default. !

•  On the other hand, that pre-installed version of Apache
may lag the latest release (even after you apply all vendor
updates), or lack a feature you need, or come statically
built with features you don't need.!

•  You may thus want to (re) install the latest version of
Apache even if there's a vendor version already installed.!

28!

Using a Package Manager or Port Tool!
•  One nice alternative to installing from scratch is to use a

"package manager" or a "port tool" to install a
professionally prepared port of Apache. !

•  Going this route saves you the pain of figuring out any
tricks you may need to know in order to build Apache from
scratch for your platform. !

•  Using a package manager or port tool will also make it to
easy to stay patched up-to-date in the future.!

•  Unfortunately, each package manager/port tool is a little
different when it comes to installing Apache. !

•  We'll illustrate installation of Apache on a Mac with Mac
ports (hey, we had to pick something, right?)!

•  Begin by installing macports on your Mac OS X system if
you don't already have it installed (see !
http://www.macports.org). ! 29!

Example Apache Installation Using Mac Ports !
•  Once you have Mac Ports installed, you can install Apache by saying:!

% port search apache " "<-- find the package we want!
% su" " " " " " "<-- su doesn't work on your Mac? See!
" " " " " " " "http://support.apple.com/kb/HT1528!
port install apache2!
(This will install apache2 and also recursively install any dependencies
(such as apr, apr-util, expat, openssl, pcre, perl5, etc.) if needed).!

"# port load apache2!
launchctl load -w /Library/LaunchDaemons/org.macports.apache2.plist!
"(This will set up this version of Apache to be the one that's run/used)!

•  You might also need to punch a hole in your firewall rules to expose
your web server to the world (you will likely be automatically prompted !
to do so on most Macs). Note: do NOT go to System Preferences -->
Sharing --> Web Sharing in an effort to allow httpd, you will end up
launching Apple's default apache2, not the Apache you just installed!!

30!

Tailor httpd.conf!
•  The Mac Ports version of Apache ships with a basic

httpd.conf config file at /opt/local/apache2/conf/httpd.conf !
•  !
•  FWIW, the as-shipped Apache config file will generally

work fine as-is for a basic web server (although you
should tailor that file with your favorite editor (vi, !
emacs, etc.), to at least have an accurate ServerAdmin
email address).!

•  You should know, however, that there are many additional
things that you can do via httpd.conf to help harden your
server; some excellent starting suggestions are in:!

" ""20 Ways to Secure Your Apache Configuration,"!
" "http://www.petefreitag.com/item/505.cfm!

31!

(Optional) Installing mod_security2!
•  mod_security is a Web Application Firewal (WAF) that you can run to

harden your Apache installation. While very helpful, unfortunately,
many sites do not use it. To install it using Mac Ports, say:!

port search mod_security2!
port install mod_security2!

•  Edit /opt/local/apache2/conf/httpd.conf to include:!

LoadFile /opt/local/lib/libxml2.dylib!
LoadFile /opt/local/lib/liblua.dylib!
LoadModule security2_module modules/mod_security2.so!

•  You'll need to create and tailor a mod_security.conf file alongside !
your httpd.conf file (I got my starting mod_security.conf from the
mod_security source files available at www.modsecurity.org). You will
also need to retrieve and install appropriate mod_security rules, such
as the Core Rule Set!

32!

(Optional) Installing mod_security2 (Continued)!
•  Retrieve and install the mod_security core rule set:!

mkdir /opt/local/apache2/conf/crs!
cd /opt/local/apache2/conf/crs!
wget "http://sourceforge.net/projects/mod-security/files/\!
modsecurity-crs/0-CURRENT/modsecurity-crs_2.2.0.tar.gz/download"!
gunzip modsecurity-crs_2.2.0.tar.gz!
tar xfv modsecurity-crs_2.2.0.tar!
cd modsecurity-crs_2.2.0!
mv * ..!
cd ..!
rmdir modsecurity-crs_2.2.0!
more INSTALL " " "<-- *DO* what's described in here! :-) !

•  And be sure you have required config files included in httpd.conf:!
"<IfModule security2_module>!
" "Include conf/modsecurity.conf!
" "Include conf/crs/modsecurity_crs_10_config.conf!
" "Include conf/crs/activated_rules/*.conf!
"</IfModule>!

33!

Make Some Sort of Home Page For Your Web Server!
•  The httpd.conf file will tell you the location for your web server's

document root; in our case it is /opt/local/apache2/htdocs!

•  cd to that directory, then create an index.html file (using vi, emacs, or
your favorite editor), so the web server has something to display:!

<HTML>!
someserver.example.edu!

•  Make sure that file's readable by all:!

"# chmod a+r index.html!

34!

Start Apache!
•  You can then launch Apache:!

/opt/local/apache2/bin/apachectl start!

35!

Check To Make Sure Everything's Okay!
"Check to see if there are httpd's running (you will typically see
several pre-spawned and ready-to-go, that's normal):!
ps auxw | grep httpd!

If there aren't any httpds, check the log files for possible errors:!

tail -f /var/log/system.log " " "<-- ctl-C to interrupt!
tail –f /opt/local/apache2/logs/error_log!

"Everything looking okay? Now try connecting from a browser by
plugging in the address of your server in the browser's address bar:!

http://someserver.example.edu/!

"If you see the home page you created on the previous slide, you've
got Apache running!!

36!

Some Random Thoughts On Log Files!
-- Do you normally review your syslog and web logs? Do you think you !
 SHOULD be paying (more) attention to your syslog and web log files?!

-- Who's responsible for doing that review? Your web person? Your!
 sysadmin? A security person? !

-- How do you do it? Is there a log analysis tool you use?!

-- What do you look for?!

-- What do you do if you see anomalies (if anything?)!

-- Have you considered secure centralized logging? (syslog-ng, etc.?)!

37!

IV. Enabling SSL/TLS On !
Apache2 With mod_ssl!

38!

You've Got (Still) More Work To Do!
•  You have a web server installed and running, however, it's

NOT a SSL/TLS secured web server. Enabling SSL/TLS on
that server requires you to obtain (or create) a cert, and
then configure the server to do SSL/TLS. !

•  Many operating systems will have a vendor web page or
some other documentation walking you through the process
of creating a "self-signed" certificate and enabling
mod_ssl (the Apache module that is normally used to
enable SSL/TLS). !

•  For example, for OS X, see:!
http://developer.apple.com/internet/serverside/modssl.html!

39!

OpenSSL!
•  The material we're going to show you on the following

slides assumes you have the latest version of OpenSSL
installed (normally OpenSSL will automatically get installed
as part of installing Apache, as an Apache dependency).!

•  Because OpenSSL does all the "heavy lifting" for our
crypto, we want to make sure that it's completely patched!
up-to-date. As of the date this presentation was built, that
implies running OpenSSL 1.0.0d!

% openssl version!
OpenSSL 1.0.0d 8 Feb 2011!

•  N.B.: due to perceived performance issues, some vendors
may be intentionally be holding off on going to 1.0.0d! 40!

The Process of Creating A Cert With OpenSSL!
"1) Make a working directory and cd down into it:!
% mkdir KeyGen!
% cd KeyGen!

2) Create a PEM-format 3DES-encrypted RSA server private key!
"% openssl genrsa -des3 -out server.key 2048!
% chmod 0400 server.key <-- protect your private key from being read!

Note: pick a strong password and do NOT forget it! !
Back up server.key (and your password!) somewhere safe!!

"3) Create a PEM-format Certificate Signing Request !
"% "openssl req -new -key server.key -out server.csr!

"Note: when asked for your "Common Name," this must be the fully
qualified domain name of your server!!
"For now, omit entering a challenge password / optional company name!

41!

"What's PEM and 3DES and RSA and..."!
"Besides the math that may be involved, one of the things that tends
to discourage some people when they begin working with cryptographic
apps is the amount of jargon involved (sorry about that!).!

"For example, on the preceding page, "PEM" stands for "Privacy
Enhanced Mail" (even though what we're working on has nothing to do
with mail). PEM format files are "base 64 encoded" text files (unlike
some other non-printable binary format files). As text files, PEM-
format files can easily be copied or transfered just like any other text
file. (See en.wikipedia.org/wiki/X.509#Certificate_filename_extensions)!

""3DES" stands for Triple DES, a common algorithm for encrypting
content. See http://en.wikipedia.org/wiki/3DES "RSA" is yet another
cryptographic algorithm. See http://en.wikipedia.org/wiki/RSA!

"Note that you do NOT need to understand the mathematical subtleties
of these algorithms to successfully use SSL/TLS.!

42!

"Self-Signed" Vs. "Signed by a Real CA"!
"At this point, however, there IS one critical distinction that you do
need to understand, and that's the difference between a self-signed
cert, and a cert that's been signed by a real certificate authority.!

"You can create your own "certificate authority," and use that "CA" to
sign your own certificate, OR you can request that a real (e.g., widely
accepted) certificate authority issue and sign your certificate.!

"For the purpose of this part of the discussion, we'll create our own
"certificate authority" and issue and sign our own server certificate.!

"Note: our creation of a CA certificate is being done as part of this talk !
as an exercise/example. I do NOT meant to imply that anyone can or
should attempt to create a "trustable" CA this way!!

"For that reason, I'm going to put "CA" in quotes while we're talking
about anything associated with our "self-made" "CA"!

43!

Creating Your Own "Certificate Authority"!
"1) Let's create a 2048 bit key for your own "certificate authority"!
"% openssl genrsa –des3 -out ca.key 2048!
% chmod 0400 ca.key "!

"Note: pick a strong password and don't forget it!!
"Back up ca.key (and your password for that key!) somewhere safe!!

"2) Now create a self-signed "CA" cert!
"% openssl req -new -x509 -days 365 -key ca.key -out ca.crt!

"3) Now create and sign the server cert with the "CA" cert you made!
"% openssl x509 –req -days 365 -in server.csr -out server.crt \!
-CA ca.crt -CAkey ca.key –CAcreateserial!

"Now let's copy those files into place...!

44!

Moving The Certs and Key Files Into Place!
"% su " " " "!
mkdir /opt/local/apache2/ssl.keys!
cp server-ca.crt "/opt/local/apache2/ssl.keys/server-ca.crt!
cp server.crt "/opt/local/apache2/ssl.keys/server.crt!
cp server.key "/opt/local/apache2/ssl.keys/server.key!

"The server's private key is password protected. This means that you'd
need to supply the password for that cert as part of the startup
sequence. If you can't supply that password at startup, you're S-O-L.!
Many server admins therefore routinely strip the password from their
server's private key, even though that reduces its security:!

cd /opt/local/apache2/ssl.keys!
cp server.key server.key.original!
openssl rsa –in server.key.original –out server.key!
chmod 0400 server.key <-- IMPORTANT, Don't Forget To Do This!!

45!

Badness Inherent in That Process!
"There's a lot of inherent badness in the process you just
saw, besides just stripping the password from the server's
private key. Let me just mention a few examples:!

-- when you created your server's certificate request you!
 supplied a bunch of information; it never got validated!
 by anyone (except yourself); ditto for the "CA" cert.!
 The "identities" associated with those public keys !
 should NOT be trusted. You could say you're ANYONE.!
-- a "CA" key should never be on an Internet-connected !
 host (if a real CA key gets compromised, chaos results)!
-- what about revoking no-longer-trustworthy certs?!

"Those (and other) issues notwithstanding, these certs will
work (at least for testing/demonstration purposes).!

46!

Enabling SSL: edit httpd.conf!
"In conf/httpd.conf, make sure you've uncommented:!

Include conf/extra/httpd-ssl.conf!

47!

Now edit conf/extra/httpd-ssl.conf!
In the default VirtualHost stanza, localize appropriately:!

ServerName someserver.example.edu:443!
ServerAdmin johnsmith@example.edu!

Only do higher security ciphers, and only use trustworthy SSL Protocols:!
SSLCipherSuite ALL:!aNULL:!ADH:!eNULL:!LOW:!MEDIUM:!EXP:+HIGH !
SSLHonorCipherOrder on!

SSL Protocol Support!
SSLProtocol –ALL +SSLv3 +TLSv1 !

Point to the locations of the cert files:!

SSLCertificateFile "/opt/local/apache2/ssl.keys/server.crt"!
SSLCertificateKeyFile "/opt/local/apache2/ssl.keys/server.key"!
SSLCertificateChainFile "/opt/local/apache2/ssl.keys/server-ca.crt"!

48!

What Are The Parameters in Those !
SSLCipherSuite and SSProtocol Lines?!

-- See http://httpd.apache.org/docs/2.0/mod/mod_ssl.html#sslciphersuite!

SSLCipherSuite ALL:!aNULL:!ADH:!eNULL:!LOW:!MEDIUM:!EXP:+HIGH!

That forbids auth algorithms w/o authentication (!aNULL), forbids Diffie Hellman !
authentication (!ADH), forbids null cipher authentication (!eNULL), forbids Low!
and Medium strength ciphers (!LOW, !MEDIUM) and export ciphers (!EXP); !
and says the server should use High strength ciphers.!

-- See http://httpd.apache.org/docs/2.0/mod/mod_ssl.html#sslprotocol!

SSLProtocol –ALL +SSLv3 +TLSv1!

That command disables SSLv2, an inherently insecure protocol that you should!
NEVER use (see RFC 6176, "Prohibiting Secure Sockets Layer (SSL) Version 2.0")!

49!

"Can I Really Safely Dump Weak & Medium Ciphers?"!
•  Yes. However, if you do try it and run into some unexpected issue,

backing that choice out is trivial, so go ahead and live on the
cryptographic wild side! :-; !

•  By the way, some may wonder how we came to deploy weak ciphers in
the first place. Were we just brain dead? No. In the bad old days,
weak crypto was mandated for export applications by the U.S.
government.* As a result, some international users only had access to
crypto libraries using weak 40 bit or 56 bit ciphers. If you only
offered stronger ciphers on your secure web server, in the bad old
days, users with crippled web browsers couldn't connect. These days,
all browsers support strong crypto, so dump 40 & 56 bit ciphers!!

•  The other factor that formerly drove some sites to use weak(er)
ciphers was the computational load that use of stronger ciphers might
impose. With current CPU horsepower (processor speed and core
count), CPU impact has effectively become a non-issue for all but the
most heavily loaded sites (and you should upgrade anyhow!)!

----!
* en.wikipedia.org/wiki/Export_of_cryptography_in_the_United_States !50!

"What About That Other Parameter You Highlighted? !
Is There Anything Better Than TLSv1?"!

•  OpenSSL supports TLS v1.0, but currently shipping production versions
of OpenSSL DO NOT do TLS v1.1 (RFC4346, April 2006) nor TLS v1.2
(RFC 5246, Aug 2008) as of the time these slides were built.!

•  If you're an enthusiast and want support for TLS v1.1 or TLS v1.2, you
may want to see the alternative TLS implementations mentioned at !
en.wikipedia.org/wiki/Comparison_of_TLS_Implementations (But is
there a "mod_foocrypt" to easily integrate all of those alternatives?
For gnutls yes, but in at least some other cases, no...)!

•  Some TLS 1.2 implementations are also fairly exotic/experimental and
may be thinly supported, tricky to successfully build on some
operating systems, or lack other features (like compression support). !

•  Browser support for TLS v1.2 also remains regrettably uneven
(en.wikipedia.org/wiki/Transport_Layer_Security!
#Browser_implementations)!

51!

Getting Back to Apache... Let's Start Apache
With mod_ssl and Check for Any Errors!

"Start (or restart) Apache:!
"# /opt/local/apache2/bin/apachectl start " "(or restart)" "!

Check to see if there are httpd's running:!
ps auxw | grep httpd!

If there aren't, check the log files for errors:!

tail -f /var/log/system.log " " "<-- ctl-C to interrupt!
tail –f /opt/local/apache2/logs/error_log!

"Everything looking okay? Now try connecting from a browser:!

https://someserver.example.edu/ "<-- Note the s in https!

"What will you (hopefully) see?!
52!

This Example Warning Is NOT An "Error"!

53!

If You WERE to Click "Add Exception" (Doh!)!

In spite of all those warnings, most users will, naturally, !
happily proceed to click on "Confirm Security Exception." !
At that point, the SSL/TLS "trust" game is over for !
that server...! 54!

Sure Looks Like A Real Trusted Site Now, Eh?!

55!

What If You Want To Delete A (Mistakenly) Trusted
SSL/TLS Server Certificate? In Firefox Preferences...!

56!

V. Certificate Authorities and !
MITM Attacks!

57!

Assume You Were Asked To Click On a URL...!
•  I'm not going to give you an actual URL to click on, !

but let's assume that someone on the Internet asked you
to click on a URL that looked something like:!

http://www.example.com/my-ca.crt!

"Would you do it? Would you click on that link? I think
many people would – heck, they click on phishing URLs all
the time, and malware URLs, and all sorts of stuff, right?!
There's nothing that looks particularly evil about that link
(I mean heck, it doesn't end in .exe or anything, right?)!

•  If someone did click on a link like that, they might see a
popup dialog that looked like...!

58!

The Rather Matter-of-Fact Warning You See When !
You're Offered A New Certificate Authority!

Note: Most users won't examine the CA certificate, or if they did, they
typically won't understand/correctly interpret what they'd likely be
shown. Most users have learned to "always" just click "OK"! 59!

Compare That Quite Low Key New CA Warning Dialog !
To the Earlier Positively Shrill Self-Signed Cert Dialog!
•  On slide 53, we showed you the relatively in-your-face

dialog box Firefox displays when you run into someone
who's trying to get you to accept a self-signed cert. !
It was pretty shrill. Remember the little "passport
inspector" logo and the "Get me out of here!" text?!

•  Contrast that with what you just saw on the preceding
slide. Given the unbounded destruction that trusting a
random CA can impose, don't you think that the "Are you
SURE you want to accept this new CA?" dialog should have
a few more bells ringing and flashing lights going off???!

•  In my opinion, that's a pretty matter-of-fact dialog box for
such a potentially security-devastating decision!!

60!

What Could Happen? Man In The Middle (MITM) Attacks!
•  SSL/TLS is supposed to provide end-to-end encryption, all

the way from your browser, all the way to the remote
site's secure web server. When traffic is subject to a
successful MITM attack, that ceases to be true. When
someone manages to successfully conduct a MITM attack,
they get between you and the server you're trying to
securely communicate with, impersonating that real server.!

•  They (rather than the ultimate destination) can accept and
decrypt your encrypted traffic. They can then view (and/or
modify) that traffic, before surreptitiously re-encrypting it
via a second SSL/TLS session, and sending it on its way.!

•  If SSL/TLS works the way it is supposed to, it would be
impossible for you to be conned into trusting an imposter's
system – the imposter wouldn't have the certificate it
should have, signed by a trusted CA. If users decide to
trust a new random CA, however, that model can fall apart!61!

Just In Case I Haven't Spelled This One Out Clearly
Enough: Trusting a "Random" New "CA" Is REALLY Bad!

•  If you decide to trust an untrustworthy "certificate
authority" you may end up subsequently trusting all sorts
of random sites that you shouldn't, such as sites that are
impersonating...!

-- favorite online stores!
-- your bank, brokerage, or credit card company, !
-- your doctor's office,!
-- critical "secure" university web sites,!
-- etc., etc., etc.!

•  Some machines are more vulnerable to getting new random
untrustworthy CAs than others...!

62!

Shared Computers Can Be Very Vulnerable!

•  We're all familiar with shared computers – we have them
in our homes, in our campus computer labs, in cyber cafes,
in libraries, in hotel lobbies, at conferences, etc.!

•  If those systems aren't COMPLETELY locked down and
ROUTINELY re-imaged to a known-good state after !
EVERY USE, a malicious (or clueless) user could:!
-- accept a bogus certificate authority (it only takes a !
 few seconds to do so), and then!
-- via DNS changer malware, configure the system to use !
 an untrustworthy recursive resolver ("DNS server"), !
 thereby driving subsequent users to a web server of !
 the malicious user's choice that will *seem* to be the!
" secure and trustworthy destination they wanted!
-- alternatively, the malicious user could just transparently!
 eavesdrop upon all the user's "confidential" traffic!

63!

The Default Set of CAs in User Browsers!
•  Users have the discretion to add additional certificate

authorities to their list of trustworthy CAs, as we just
showed you. Obviously that's a huge potential risk.!

•  Users can also review the default list of as-shipped
browser-trusted certificate authorities, and delete any !
CAs that they don't like (but few people do). !

•  In most cases, user simply blindly trust those who create
and distribute browsers to ultimately decide which CAs
should be considered to be "trustworthy" by default.!

•  There are some things about that that should make you
unsettled.!

64!

Different Browser Vendors Trust Different Default CAs!

•  While you might expect all vendors to trust an agreed upon common
set of commercial certificate authorities, that's not the case. (We'll
leave comparing and diff'ing the various default CA lists, and
speculating on the reasons for the differences between the various
vendor lists, as an exercise for the reader). To get you started:!

-- Mozilla Included Certificate List!
 http://www.mozilla.org/projects/security/certs/included/!
-- Opera Root Store!
 http://my.opera.com/rootstore/blog/!
-- Windows Root Certificate Program Members!
 http://social.technet.microsoft.com/wiki/contents/articles/3281.aspx!

"Note: those lists can and do get "automatically" updated over time!!

•  You can also check the list of CAs your browser trusts by checking
from within that browser. For example, in Firefox, go to Preferences !
--> Advanced --> Encryption --> View Certificates --> Authorities.!

65!

Should Each of Us Really Be Trusting All Default CAs?!

•  There have been many reports in the media about
(potentially state-sponsored) cyber attackers aggressively
targeting cutting edge intellectual property, such as new
U.S. scientific discoveries or undisclosed inventions. !

•  We've all also heard repeated reports alleging that (some)
foreign governments routinely conduct cyber surveillance
of peaceful political and religious dissidents in the U.S.!

•  While I trust our government to abide by the rule of law
(e.g., acquiring court orders for any interceptions they may
conduct), I'm not sure I trust all foreign governments.!

•  Out of all the default certificate authorities in your web
browser, could there be at least *one* CA that's under the
influence or control of a foreign government? If so, we
need to worry about so-called "Compelled Certificate
Creation" attacks...!

66!

Compelled Certificate Creation Attacks!

67!

Secure Renegotiation: A More Mundane MITM Risk!

•  In 2009, it was discovered that SSL and TLS were
vulnerable to insecure protocol renegotiaton, potentially
enabling an entire class of MITM attacks against SSL/TLS
(see http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2009-3555)!

•  RFC 5746 (February 2010) described a protocol-level fix
for the insecure renegotiation, but many sites have neither
blocked renegotiation entirely (something of a blunt
weapon when it comes to addressing this issue), nor
implemented secure renegotiation (typically by updating
their web server AND SSL/TLS implementation).!

•  Remember: nearly 40% of all the higher ed web servers I
checked with the SSLlabs tool remain vulnerable to this
risk as of the time I made these slides.!

68!

VI. "So Is THAT All You've Got For Us, Joe?"!

No, But I've Got Limited Time And I'm!
Already Running Long, Aren't I? :-; !

69!

Certificate Management Processes!
•  One (of many) things we really haven't talked about is

certificate management.!

-- WHO can order certs at your site?!
-- HOW do your certificates and keys get backed up?!
-- WHEN do certs get updated/replaced?!

•  I promised I wouldn't pick on individual sites, but let me
just gently illustrate one point with something relating to
the REN-ISAC's own certificate...!

•  If you run Certificate Patrol, a Firefox addon, when users
visit a site that uses certificates, they get to routinely see
that site's certificate info... For example...!

70!

My Thought For The REN: DON'T Procrastinate!!

71!

There are a million things you need to constantly track, and it is really easy
to accidentally let things like your certificates accidentally expire... Get these
mechanical issues calendared/automated! :-) !

Your School (Probably) Uses More Than One Domain!

•  I'd be willing to *bet* that your schools all use more than
one domain. You may have one dot edu domain you
primarily use, but I bet you also have a hodge podge of
dot coms or dot orgs or legacy edu domains in use by some
parts of your school. How do those certs for THOSE
domains get handled? !

•  Anyone who's on the domain's whois points of contact, or
who can read common role accounts (root, postmaster, etc.),
may be able to request a domain validation certificate from
some CAs, and in many cases they may have already done
so without even asking your permission to do so! :-)!

•  Is that how you expected this to all work? :-; !
72!

Certificate Characteristics!
•  We also haven't talked about certificate characteristics:!

-- What DURATION certificates should you buy?!
-- Are WILDCARD certificates a good idea? They're sure!
 convenient, but might they be TOO convenient?!
-- Do you need certs with 2048 BIT SIGNATURES?!
 (www.incommonfederation.org/cert/doc/2048-bit-Certificates.pdf)!
-- How about EXTENDED VALIDATION (so-called "green !
 bar") certs? (They cost more from traditional CAs, but!
" that may not be true if you purchase them from!
 the InCommon certificate program)!
-- What about things like "Step Up" or "Server Gated!
 Cryptography" (SGC) certs? Believe it or not, some !
 schools are still using them (I wouldn't be). (Nice!
 article on that topic at http://www.sslshopper.com/!
 article-say-no-to-sgc-ssl-certificates.html)!

73!

Certificate Validity and Revocation!
•  One of the most subtle and important certificate-related

topics is handling certificate validation and revocation.!

•  Has your campus devoted any attention to making sure
that user browsers "do the right thing" when it comes !
to checking OCSP (online certificate status protocol) and !
CRLs (certificate revocation lists)?!

74!

Using Server Certs Beyond "Just" The Web!
•  Another interesting topic: certificates aren't a technology

limited just to web servers. Have you considered using
certificates to secure other campus services, too?!

•  For example, you can (and should!) use SSL/TLS wherever
else you can, or wherever passwords are transmitted, such
as for:!

-- SMTPS (secure opportunistic encryption of server-to!
 server email, when both sides support it)!
-- IMAPS (secure user access to their email via dedicated!
 clients such as Thunderbird or Outlook – they ARE !
 logging in, after all, right?)!
-- Secure Submit (secure authenticated email submission !
 by users)!

75!

Personal Certs!
•  We also don't really have much time left today to talk

about personal certificates, but that's another potential
"game changer" from the InCommon Certificate program.!

•  Personal certificates have had limited deployment to date
in the U.S., except in the government (where the "Common
Access Card" or "CAC" is ubiquitous), but that may be
about to change.!

•  Sometimes trying a new technology like personal certs is
just a matter of getting your "feet wet."!

•  For example, what about using personal certs for S/MIME
secured email?!

76!

An Alternative to PGP/GnuPrivacy Guard!

•  While PGP/GnuPrivacy Guard has garnered some traction
in the security community, it's still pretty uncommon among
non-technical friends and relatives. !

•  An interesting potential alternative to PGP/GnuPrivacy
Guard is S/MIME. Many email clients have built-in support,
and in some ways key management for S/MIME is far
easier. If you'd like to try using S/MIME on an ad hoc
TEST BASIS, I've got a draft one pager with instructions
for doing S/MIME with Thunderbird on the Mac out at:!

http://pages.uoregon.edu/joe/smime/!

That one pager's available in PDF and docx formats.!
Any feedback on that writeup would be appreciated.!

77!

Another Topic Related To Personal Certs!

•  While you can store personal certs in your browser on a
dedicated laptop or workstation, it's far more secure to
store personal certificates on a secure cryptographic !
token that you can carry with you at all times.!

•  I'd love to hear the community's experiences with secure
("FIPS-140 certified") hardware cryptographic devices that
they may have used to hold personal certificates.!

•  Do the products you've tried work well with all platforms?
(Mac, Linux, Windows, etc.?)!

•  How do you deal with portable devices that may not have
an integrated USB port or smart card reader?!

•  Can users load (or reload) their own personal certs, or do
they need to be administered centrally?!

•  Are hardware tokens for personal certs "priced right?"!
78!

A Benchmark Two Factor Authenticator, For Comparison!

•  We need to try to get to the point where we have secure
personal-certificate-based hardware authentication devices
that cost no more than my kid's $6.50 WoW authenticator...!

79!

Thanks for the Chance To Talk Today!!

Are there any questions?!

These slides can be downloaded from:!
http://pages.uoregon.edu/joe/techburst/!

80!

