Nowhere To Hide: Using Passive DNS
To Find Spammer Infrastructure

M3AAWG Paris, France
12:30-14:30, October 24t 2016
Forum ABC Room, Level O

Joe St Sauver, Ph.D. (stsauver@fsi.io)
M3AAWG Sr. Technical Advisor

Scientist, Farsight Security, Inc.

https://www.stsauver.com/joe/nowheretohide/

— Social Media Posting Allowed —
Twitter, Facebook, LinkedIn, other social media posts
are permitted during this session, PROVIDED THAT YOU...

* DO NOT post the private link provided for attendees to use to obtain a free
account for training purposes

* Only post comments made by the speaker

* Do not post comments or questions from the audience (but you can share the
speaker’s responses to questions)

* Do not post the name, position or company of other meeting attendees
* Do not post conversations with attendees
* M3AAWG is not a deliverability conference; we are

* An industry working group meeting

* An anti-abuse conference, or

* A gathering of security experts

* All of the M3AAWG Membership, Trademarks and Logo guidelines apply
https://www.m3aawg.org/members/how-promote-
m3aawgH#TrademarkGuidelines

Welcome To The Paris Passive DNS Training!

Let me begin by thanking Anna, Chris & Udeme for the invitation
to do passive DNS training for you here in Paris.

| also want to thank all of you for making the time to sit in on
today's session — | know that you're in "La Ville Lumiere" with lots
of tempting sites to see and wonderful bars/restaurants to enjoy,
so I'll do my best to make sure your training time is well spent.

We're going to begin by talking about passive DNS, and then,
after that, if we still have time and there's interest, we'll go back
and provide some optional backfill about "regular DNS"
(normally I'd reverse those sections, but | suspect that many of
you already have a working fluency about DNS)

There will be a sign-in sheet going around if you need a
certificate of attendance for your files back home.

Please also take the time to fill out a session evaluation.

A Disclaimer About The IPs and Domains Used Today

* Toillustrate the tools and techniques we'll be talking about
today, I'll be showing examples that involve various IP addresses,
netblocks, ASNs, and domains. Unless stated to the contrary,
| do NOT mean to imply that these are bad (or good!) IPs,
domains, etc. (I'll often use colleges) These are JUST EXAMPLES.

* You, however, when practicing with passive DNS, may want to
try investigating domains that you believe to be suspicious.
Some of those sites may even be involved with malware.

* Please do NOT investigate any sites that may be involved with
malware while here at M3BAAWG (we don't want anyone getting
infected, or spreading an infection to others). If you do choose
to investigate such sites elsewhere, you do so at your own risk.

My Odd Slide Style

Let me also get one other thing "out of the way" up front: as
you've seen by now, | produce detailed slides. Some people
don't get why | use this style, so | now routinely try to explain this

I've tried the more-typical 3-4 bullets/slide (with ~15 slides for an
hour long talk), but | find myself getting sidetracked, rambling/
running over, or | end up missing/skipping stuff.

| also deal with complex issues, and | HATE to be misquoted.

My slide style prevents a lot of those problems, and means that
you don't need to try to take notes.

That said, I'm not going to read my slides word-for-word for
you. You don't need to try to do so, either, although they are a
sort of "closed captioning" if you're deaf or hard-of-hearing.

| also write detailed slides to help people looking at them after
the fact, and to facilitate indexing by web search engines.

Today's Session

I've prepared some material I'm planning to go over, but |
encourage you to ask questions as we go along, should
questions arise — I've explicitly left some time for you to do so.

| will also suggest some exercises you can try. The exercises are
optional -- you can do them or skip them as you may like, but |
think people learn more effectively when they actually try stuff.

Farsight is providing all attendees at today's session with
complimentary temporary access to DNSDB for use as part of
this training. If you don't want to use DNSDB, you're welcome to
use another passive DNS system you may have access to,
instead.

There are unavoidable differences between various passive DNS
implementations and we can't document everything, but the
techniques and approaches I'll show should broadly generalize.
We want you to learn skills that will help you in your work.

Some Entities Offering Passive DNS Services

* Farsight Security, Inc.'s DNSDB (see https://dnsdb.info/)

— DNSDB is a commercial product, but individual law enforcement officers
(LEOs), vetted academic researchers, and vetted-but-unfunded "Internet
superheroes" can request free (grant) access from Farsight.

 Some other passive DNS implementations include:

— Florian Weimer's BFK, http://www.bfk.de/bfk_dnslogger.html

— CERT.at/Aconet Passive DNS (inquire: kaplan@cert.at or lendl@cert.at)

— CIRCL Passive DNS, http://www.circl.lu/services/passive-dns/

— http://passivedns.mnemonic.no/search/

— https://www.opendns.com/enterprise-security/resources/data-sheets/
investigate/

— https://www.cs.auckland.ac.nz/research/groups/sde/dhdb-index.php
— VirusTotal, https://www.virustotal.com/#search
— 360.cn Passive DNS, https://www.passivedns.cn/help/

* If | missed any other passive DNS sites, please drop me a note...

This slide intentionally omitted - it contained
details about how in person attendees could get a
DNSDB account for use during the training

PART |. BASIC PASSIVE DNS VIA YOUR WEB
BROWSER

1) Introduction

What's DNS? (A Quick One Slide Intro)

DNS is one of the Internet's core protocols. DNS maps domain
names (such as www.cnn.com) to numeric IP addresses (such as

151.101.20.73), and vice versa.

We use the Domain Name System all the time without even
thinking about it, in part because DNS seems to "just magically
work," and symbolic domain names are much easier to remember
than all-numeric IP addresses.

Domain names can also be very convenient for server admins.
For example, if a server administrator needs to move her web
server to a new provider, she can do so without having to
manually tell each user her site's new IP address. She can just
change the DNS for her site, and then her users will automatically
go to the right place when they next try to visit.

Spammers and Other Cyber Criminals ALSO Use DNS

 DNS is convenient for everyone, good guys and bad guys alike.

e Atypical spammer might have many web sites, perhaps different
ones for each different affiliate sender, or different ones for each

spamvertised item. DNS make it easy for the spammer to manage
those sites, and to share their limited pool of IP addresses.

* If a cyber criminal has a "bit of a set back," and ends up kicked off
a hosting provider they've been using, they can just update their

DNS when they find a new rock to hide under. Clearly, that's a
convenience for the bad guy.

 However, DNS can also work AGAINST cyber criminals...

Key idea: If we can discover one initial bad guy site, we
may be able to use passive DNS to "PIVOT" and find related
sites also being used by that bad guy, or OTHER bad guys.

11

ASN

Whois

[Domain Name

IP Address(es) }

[Name Server

:

Domain Name(s)}

ASN |

Name Servers]

[IP Address(es)
[

Domain Name(s)}

Whois

Pivoting:

Using "Initial
Clues" To Find
"Related
Resources"

-- Passive DNS
Based

-- NOT Passive
DNS-Based

pivot attributes

What's The Point of Pivoting via Passive DNS?
* By exploring shared "evil" IPs (or CIDR netblocks)

— We can identify compromised machines that may need remediation,
— It avoids leaving the miscreant with a foundation from which to recover

— You maximize your chances of successfully chasing financial payment
details and other business records

— You may even discover additional unknown criminal "lines of business"

* Identifying related bad domains

— Cyber criminals tend to be using more and more domain names, so
there's no choice but to scale up right along with them.

— More domains seized = more "news worthy" law enforcement actions,
and more incentive for the good guys to spend their limited cycles on this
case, not some other alternative ones

— You wouldn't want to end up with an incomplete takedown/seizure (you
know, potentially spawning online remarks such as "Hah hah hah, they
seized a dozen of my domains, but they missed two thousand other
ones | also have, so | didn't even really notice it")

One Small Problem: Regular DNS Isn't Designed To
Facilitate Hunting Spammers/Cybercriminals

 Hunting down bad guys was never a DNS design goal.

* It shouldn't be surprising, therefore, that normally we can't...
— Find all the fully qualified domain names under a base domain
— Find all the domains that use a specific name server

— Given the IP used by one fully qualified domain name, find all
other domain names that are also on that same IP address

— Given a net block, find all the domains in that network range

— Given a domain name, see if it has resolved to multiple
different IPs over time, and if so, what were those IPs?

* These queries are all examples of the sort of things that "regular
DNS" was just NOT set up to do...

* Fortunately, passive DNS *can* handle those sort of queries.
* By using passive DNS, we can make it harder for bad guys to hide

Where Does Passive DNS Data Come From?

e At leastin Farsight's
case, our passive DNS

data is collected by
passively monitoring
DNS cache miss traffic
above large recursive
resolvers — actual Cache
DNS queries and
responses.

* That primary data is
also augmented with
information from
zone file access programs,
as may be available.

Authority
Servers

Recursive
Servers

Farsight
DNSDB

Stub
Resolvers

15

An Aside About Passive DNS and Privacy

Farsight Security and | both care a great deal about user privacy,
and we hope that you do, too.

At the same time, we want and need to ensure that spammers

and cyber criminals can be held accountable. Law breakers must
not be free to perpetrate their online crimes with impunity.

Passive DNS, collected properly, comes from above large shared
recursive resolvers. Queries appear to originate from the
recursive resolver, not from any individual user. As a result, no
personally identifiable information gets collected or stored.

Because of this architecture, passive DNS does NOT raise the sort
of pervasive monitoring concerns that are associated with things
like bulk metadata collection and traditional traffic analytic
methods, as discussed in "The Enduring Challenges of Traffic
Analysis," https://www.stsauver.com/joe/dublin-traffic-analysis/

2) The Simple Web Interface to DNSDB

Accessing DNSDB

« DNSDB can be accessed multiple different ways, including:
1) Via a simple web interface. We'll talk about that first.

2) Via a versatile RESTful API (see https://en.wikipedia.org/wiki/
Representational state transfer if you're curious about REST)

Often the API is accessed via a Unix command-line interface tool.
We'll show you the Python DNSDB API client in the next section.

You can also access it via a Splunk plugin, convenient if you "live in Splunk”

From your own C language (or other programming language) applications,
programmatically. We'll even show you skeleton libcurl code for doing that

* There are some other mechanisms that you can use to access
DNSDB, too, but we'll forego talking about them today.

* Let's begin with the simple web interface.

Limitations/Advantages of the Web Interface

Limitations:
 The web interface is primarily meant for casual/occasional
usage, and as such, is intentionally kept simple.

 The web interface returns at most 10,000 results (attempting
to render larger tables of results can make some web

browsers sluggish)

* The web interface currently lacks the ability to do time
fencing or sorting of query results. It also doesn't offer
special output formats (such as JSON-format output).

Advantages:
* The web interface is simple to use

« The web interface works on pretty much any system with a
browser, with no software installation required

Prerequisites For Using The DNSDB Web Interface

In order to be able to use the web interface, you'll need a DNSDB
username and password. If you requested one via the link
provided earlier, that information should be waiting for you in
your inbox.

The web interface to DNSDB is at https://www.dnsdb.info/

You should be able to access that web site from Firefox, Chrome,
Safari or any other popular web browser — just type that address
into your web browser's address bar and hit return.

Please try logging on to your test account now.

The DNSDB Web Client's Opening Screen

@ https://www.dnsdb.info &

Welcome to DNSDB

DNSDB is a database that stores and indexes both the passive DNS data available via Farsight Security's Security
Information Exchange as well as the authoritative DNS data that various zone operators make available. DNSDB
makes it easy to search for individual DNS RRsets and provides additional metadata for search results such as first
seen and last seen timestamps as well as the DNS bailiwick associated with an RRset. DNSDB also has the ability
to perform inverse or rdata searches.

Access to DNSDB is only allowed for authorized users. Please apply for an account if you are interested in
obtaining access.

© 2010-2016 Farsight Security, Inc.
Contact us by sending email to dnsdb@farsightsecurity.com.

21

Click "Login" on the Blue Menu Bar, Then Login...

I @ https://www.dnsdb.info/#Login c

DNSDB Login

Username: []

Password: []

Login

© 2010-2016 Farsight Security, Inc.
Contact us by sending email to dnsdb@farsightsecurity.com.

22

This Is The Opening Search Screen You Should Then See

@ https://www.dnsdb.info/#Search ¢

DNSDB Search

Search mode: @RRset | Rdata

Record type: ©|ANY = C

Domain name: []

Bailiwick: []

Search Reset

© 2010-2016 Farsight Security, Inc.
Contact us by sending email to dnsdb@farsightsecurity.com.

23

Make a Simple Sample Query...
What IPv4 Addresses Have Been Used By ieee.org?

) @ | https://www.dnsdb.info/#Search

DNSDB Search

Search mode: @RRset | Rdata

Record type: |O|A ~|| C |

Domain name: | |ieee.org |

Bailiwick: |

Search Reset

© 2010-2016 Farsight Security, Inc.
Contact us by sending email to dnsdb@farsightsecurity.com.

24

Results For That Query

A € (O 8 nhttps://www.dnsdb.info/#Search

DNSDB Search

Search mode: @RRset (Rdata

Record type: ©|A ~ C [

Domain name: [ieee.org

Bailiwick: [

Search Reset

¢ @ RRset results for ieee.org/A &=

Returned 3 RRsets in 0.05 seconds.

bailiwick ieee.org.
count 2527214
first seen 2010-06-24 04:11:02 -0000

last seen 2016-06-27 22:08:58 -0000
ieee.org. A 140.98.193.141

25

Some Tips For Working With The Web Interface

If you make multiple queries, results from later queries will get
added to the bottom of the output screen. Scroll down to see
them. [Very helpful to know if you think "nothing's happening" :-)]

To retain results from the web interface, copy and paste the
results into a text file and save that file.

If there are query results you no longer need, remove them from
your output window by clicking the red X icon

If there are query results you'd like to just temporarily hide, hit the
green arrow icon. To restore those results, hit that green arrow
icon again.

Making Correct Choices In The Web Interface

The parameters you set in the web interface control what gets
searched for and found in DNSDB.

The web form will change somewhat as you ask DNSDB to do
different sorts of searches.

If you pay attention to what DNSDB wants (e.g., "domain name"
vs. "IP address or network") you shouldn't have too much trouble.

If you do make a mistake, no big deal, just take a closer look and
try it again...

Sample Mistake: Mistakenly Putting In
An IP Where A Domain Name Is Needed...

i) @ | https://www.dnsdb.info/#Search

DNSDB Search

Search mode: @RRset | Rdata
Record type: ©O|A > C [

Domain name: |128.223.32.35 L |
Error... 128.223.32.35 isn't a

Bailiwick: [domain name! That's an IP ad(ﬂ[es;
-
I -
- T
Search—- — Reset
- -—

&) No RRset results for 128.223.32.35/A.

No big deal, just nothing found for the wrong
© 2010-2016 Farsight Security, Inc. oo S
Contact us by sending email to dnsdb@farsightsecurity.com.

Trying It Again, After Correcting The Query Settings
' @ | https://www.dnsdb.info/#Search

DNSDB Search

Search mode: '~ RRset |@ Rdata
Record type: ©|A x| Of
Record data: [128.223.32.35]
Input mode: 'Name | @ IP or network | © 'Raw hex
Search Reset

&) No RRset results for 128.223.32.35/A.
¢ 7 € Rdata results for A/128.223.32.35 &=

Returned 16 RRs in 0.22 seconds. Workec, this imes.
phloem.uoregon.edu. A 128.223.32.35
~ no nocars adn A 122 222 22 2R

29

Avoiding DNSDB Errors In The First Place

The settings you pick in the web interface control what gets
searched in the DNSDB data. Records in the DNSDB database are

conceptually similar to regular DNS records:

RRSET NAME RECORD TYPE RDATA
ieee.org. A 140.98.193.141
"LEFT HAND SIDE" "RIGHT HAND SIDE"

A RRset (Resource Record Set) name search looks for the specified
domain name on the left hand side and returns any associated IPs

If you wanted to see all known hosts (or "fully qualified domain
names") that live "under" a domain, you'd do an rrset search for
*.domain

To see the hosts that have been seen using an IP address, do an rdata
("right hand side") search for that IP

Want the domains using a nameserver? Do an Rdata name search

RRset searches: find left hand side matches

() @& https://www.dnsdb.info/#Search

DNSDB Search

"search the left hand side of DNSDB records..."
Search mode: | © RRset Rdata

Record type: ©|ANY |

Domain name: [*.uoregon.edu]

Bailiwick: |]

Search Reset
& RRset results for *.uoregon.edu/ANY c=

Returned 10000 RRsets in 3.11 seconds.

bailiwick

count 2256

first seen in zone file 2010-04-13 18:39:17 -0000
last seen in zone file 2016-06-28 20:11:15 -0000
phloem.uoregon.edu. A 128.223.32.35

ITH . \

bailiwick left hand side

count / 2256

first seen in zone file ,/ 2010-04-13 18:39:17 -0000
last seen in zone file 2016-06-28 20:11:15 -0000
Iphloem.uoregon.edu. AAAA 2001:468:d01:20::80df:2023
hailiwick unreann._edu.

Rdata searches: find right hand side matches

DNSDB Search

"search the right hand side of DNSDB |records..."

Search mode: RRset -
\
Record type: OIANY j \
\

Record data: [*.uoregon.edu N\
AY

Input mode: @ Name IP or network M 'Raw hex

\
\
Search Reset \
\
&) Rdata results for ANY/*.uoregon.edu == \\
\
Returned 10000 RRs in 95.66 seconds. \\))

\ right hand side
uoregon.biz. NS phloem.uoregon.edu.
uoregon.biz. NS ruminant.uoregon.edu.
coglink.com. NS dns.cs.uoregon.edu.
sabeink.com. NS dns.cs.uoregon.edu.
aerocenter.com. NS dns.cs.uoregon.edu.
bsdcommerce.com. NS dns.cs.uoregon.edu.
lnxcommerce.com. NS dns.cs.uoregon.edu.
solcommerce.com. NS dns.cs.uoregon.edu.
project-hifi.com. NS dns.cs.uoregon.edu.
warsawcenter.com. NS dns.cs.uoregon.edu.
astutesupport.com. NS dns.cs.uoregon.edu.
simpsontimber.com. NS dns.cs.uoregon.edu.
thesingingkettle.com. NS dns.cs.uoregon.edu.
pattiandbobgreene.com. NS dns.cs.uoregon.edu.
simpsoninvestment.com. NS dns.cs.uoregon.edu.
bluemoonconsulting.com. NS dns.cs.uoregon.edu.

A Brief DNS Record-Type "Cheat Sheet"

* If you don't choose a DNS record type, you'll see ALL record types
by default. If you're not sure, just leave the record type set to ALL,
and see what looks relevant to your needs (learn by playing with
the tool).

* Too many results? Pick a record type to reduce unwanted "noise:'

— "A" =» name to IPv4 address records ("regular DNS records")
— "AAAA" = name to IPv6 address records

— "CNAME" =>» aliases for other names

— "NS" =» name server records

— "TXT" =» text records (often used for creative purposes)

— "MX" =» mail exchanger records

— "SOA" =» Start Of Authority records

— "PTR" =» pointer (or "inverse address") records

— "SRV" =» (relatively uncommon) server records

— "RRSIG" =» one (of several types) of DNSSEC records

What About the "Bailiwick" Field In The Interface?

e Justignore the bailiwick field for now... everything should work
fine if you just leave it blank.

e If you're an enthusiast (or just overcome with curiosity):

— If you find you're getting too many results, or puzzling results, you can set
the bailiwick to be equal to the base domain that you're querying. This may
reduce the number of records you're shown.

For example, if you're doing an rdata search for www.example.com, you
could try setting the bailiwick to be equal to example.com

— If you'd like to read more about bailiwicks, see section 2.4 of
https://archive.farsightsecurity.com/Passive_ DNS/passive-dns-
architecture.pdf

"How Do | Get More Than 10,000 Results?"

* You can't in the simple web interface. If we were to allow you to
try, it would make at least some web browsers go completely
catatonic as the browser struggled to render such a huge table.

* That said, even 10,000 results is far more than many web-based
passive DNS implementations allow.

* If you need more than 10,000 results, try the command-line API
client, which we'll be talking about in the next section. It will let
you retrieve up to a million results (1,000,000) per query.

Exercises

These exercises are optional, but why not give them a try, eh?

a) Using DNSDB, look up your company's main web site (this is an
RRset query, Record type=A, Domain name=www.example.com (or
whatever)). Find the most recent IP address it has used.

b) Now click on that IP. Are there any other hosts sharing that IP
address? (you may need to scroll down to see!)

c) Let's now try doing a search for your company's nameservers.
Close the previous results (click the little red X stop signs above the
results). Go back to the search box. Do an RRset query, Record
type="NS", Domain name=example.com (or whatever). Do NOT
include the www as part of the domain name you provide...

Look for one of the most recent name servers used by the domain
and make a note of it. Now go on to exercise d) on the next slide.

Exercises (continued #1)

d) Let's see what other domains also use that name server.

Do an Rdata (not RRset) search. Set the record type= NS.
Record data= the name of the name server you found in part c).
Input mode= Name.

How MANY domains appear to be using that name server?

e) What hosts are known to be part of the europa.eu domain?
RRset search.

Record type= ANY

Record data= *.europa.eu (note the leading asterisk followed by a
dot and then the domain name)

Bailiwick (optional)= europa.eu

f) What hosts are in 147.67.0.0/17 ? (Rdata search, record type=A,
Record data=147.67.0.0/17 , Input mode="IP or network").

Do you see www.clubenglishhp.com? Does it look out of place?
When was that host last seen by DNSDB? (how can you find out?)

Exercises (continued #2)

g) Different passive DNS systems may have slightly different
interfaces, but you should be able to "cross walk"” what you've
learned without too much effort.

For instance, try some of the preceding exercises on
http://www.bfk.de/bfk_dnslogger en.html
Try searching for europa.eu (see the next screen)

Note that some queries may NOT be available from some passive
DNS implementations.

There may also be differences in the number (or format) of the
results returned.

europa.eu from BFK Passive DNS

www.bfk.de/bfk_dnslogger_en.html?query=europa.eu

The server returned the following data:

Name Typ Daten
europa.eu A 147.67.119.2
europa.eu A 147.67.119.20
europa.eu A 147.67.119.102
A 147.67.136.2
A 147.67.136.20
A 147.67.136.102

europa.eu
europa.eu
europa.eu
europa.eu NS nsl.be.colt.net
europa.eu NS nsl.bt.net
europa.eu NS nslbru.europa.eu
europa.eu NS nsllux.europa.eu
europa.eu NS ns2bru.europa.eu
europa.eu NS ns2eu.bt.net
europa.eu NS ns2lux.europa.eu
europa.eu NS ns3bru.europa.eu
europa.eu NS ns3lux.europa.eu
europa.eu AAAA 2a01:7080:14:100::361:
europa.eu AAAA 2a01:7080:14:100::362:
europa.eu AAAA 2a01:7080:24:100::361:
europa.eu AAAA 2a01:7080:24:100::362:

A S =

End of Part |

* Assuming you successfully completed the exercises on the
preceding few slides, congratulations, you're now able to do basic

passive DNS tasks!

* If you're NOT a technical person and you're itching to hit a
museum or see the Eiffel tower, you can "escape"” now, and
maybe try doing some further queries with your temporary
access later tonight or in a few days. You should have access

for about 15 days.

* On the other hand, we'd encourage you to stay here and keep
going! We've got more to share with you!

PART Il. PASSIVE DNS APl/Command Line
Interface

3) Installing the Command Line Interface (CLI)
Python Client

Limitations And Advantages of Using The DNSDB API

Limitations:
* The APl Command Line Client works best if you're
comfortable working at the Unix shell prompt

* You will need to install software (but just once!) to use the
APl Command Line Client from the command line

Advantages:

 The APl interface is easy to script if you're comfortable using
Unix pipes and redirection

 The API can be asked to return up to 1,000,000 results/query
 The API can do time fencing and sorting of query results

* The API offers JSON output format, in addition to traditional
plain text output

Prerequisites For Accessing DNSDB Via The API

* You'll need your DNSDB API key. You were sent one along with
your DNSDB username and password, so check your email!

* If at all possible, access the APl from a Linux, BSD or Mac OS
system.

* If you MUST run under Windows:

* You can try running the DNSDB command line client in a Unix virtual
machine on top of Windows

* Virtualbox is one free virtual machine environment you can try for this
purpose. This is a relatively large download, so you may not want to
download it right now, but directions are available in the MS Word
document "installing-virtualbox-m3aawg.docx" in the
https://www.stsauver.com/joe/nowheretohide/ directory

Python DNSDB APl Command Line Client

There are actually multiple DNSDB command line clients available.

For this training, we're going to use the Python DNSDB client
known as "dnsdb_query.py"

To get that software (and instructions for its installation), see
https://github.com/dnsdb/dnsdb-query

You will need to be comfortable installing software, or get help
from someone who is, to install dnsdb_query.py

If you're not comfortable installing that software, you can also just
watch while we go through this section.

Prerequisites
(per https://github.com/dnsdb/dnsdb-query)

Linux, BSD, OS X
Curl [see https://curl.haxx.se/]
Python 2.7.x [see https://www.python.org/]

Farsight DNSDB API key [see your email, if you signed up
for a free DNSDB training account]

Curl and python 2.7.x often come pre-installed on many Unix-ish
systems, so we will not address installing them further here. If you
do need to install them, they will usually be available from your
operating system's package management system.

Installing dnsdb_query.py per
https://github.com/dnsdb/dnsdb-query

You will only need to do this ONCE:

1) Create a directory
mkdir ~/dnsdb

2) Download the software:

curl https://codeload.github.com/dnsdb/dnsdb-query/
tar.gz/debian/0.2-1 -o ~/dnsdb/0.2-1.tar.gz

(continues on next slide)

Installing dnsdb_query.py (continued)

3) Extract the software

tar xzvf ~/dnsdb/0.2-1.tar.gz -C ~/dnsdb/
--strip-components=1

4) Create an API key file [note the dot before dnsdb-query.conf!]
nano ~/.dnsdb-query.conf

5) Cut and paste the following, substituting your APl Key where
shown [there should be quotes shown around the APl key in the file!]

APIKEY="putYourAPIkeyhere"

Installing dnsdb_query.py (continued #2)

6) Test the software:

python dnsdb/dnsdb query.py -i 104.244.13.104

www.farsightsecurity.com. IN A 104.244.13.104

7) Recommended: Copy dnsdb _query.py to a directory in your path

If dnsdb_query.py is copied to a directory that's in your Unix
system's default path and is executable, you will then simply be able

to say:

dnsdb query.py -i 104.244.13.104

Debugging Errors Trying To Run dnsdb_query.py
* If your API key is wrong, you may see:

S dnsdb_query.py -r yahoo.com
HTTP Error 403: forbidden

e Seeing a silent "error" with no error message/feedback?

S dnsdb_query.py -r stsauver.com

S

Do you have a .dnsdb-query.conf file in your home directory?
(note the leading dot!) Does it contains an APIKEY line, with your
actual key where it says YourLongAlphaNumericAPIKeyHere ?

APIKEY="YourLongAlphaNumericAPIKeyHere"

Learning A Little About The Command Line Client

 Some (comparatively terse) information about the DNSDB API is
available online at https://api.dnsdb.info/

* You can also read the command line synopsis...

S dnsdb_query.py --help
Usage: dnsdb_query.py [options]

Options:
-h, --help show this help message and exit
-c CONFIG, --config=CONFIG config file

-r RRSET, --rrset=RRSET
rrset <ONAME>[/<RRTYPE>[/BAILIWICK]]
-n RDATA_NAME, --rdataname=RDATA_NAME
rdata name <NAME>[/<RRTYPE>]
-i RDATA_IP, --rdataip=RDATA_IP
rdata ip <IPADDRESS|IPRANGE | IPNETWORK>

-s SORT, --sort=SORT sort key

-R, --reverse reverse sort

-j, —-json output in JSON format

- LIMIT, --limit=LIMIT limit number of results
--before=BEFORE only output results seen before this time
--after=AFTER only output results seen after this time

Time formats are: "%Y-%m-%d", "%Y-%m-%d %H:%M:%S", "%d" (UNIX timestamp),
"-%d" (Relative time in seconds), BIND format (e.g. 1w1h, (w)eek, (d)ay,
(h)our, (m)inute, (s)econd)

Learning By Examples and Mucking Around A Little

* The best way to learn to use passive DNS in APl mode is
probably by seeing some examples, and then playing with the
tools a bit yourself.

* The DNSDB API basically has three modes in which it can be used:

* Let's start with -i, our only option if we're searching for an IP
address or a CIDR netblock.

4) Investigating An IP Address or CIDR Block

If Your Starting Point Is An IP Address

You'll want to make a "dash i" query (that's the ONLY option that's
available for searching IP addresses, network ranges, etc.).

You may find IPs of interest in your mail server logs, firewall logs,
email message headers, etc.

S dnsdb query.py -i 199.48.133.170
3sea.ru. IN A 199.48.133.170
mail.3sea.ru. IN A 199.48.133.170
mail.it-solver.ru. IN A 199.48.133.170

[etc]

54

Why Would You Want To Search For An
IP Address In Passive DNS?

Some reasons include...

You have an IP address, and you want to know what domains
have been seen on that IP address. Is there anything unexpected?
Do the domain names found look suspicious? (133t speak, names
that appear confusingly similar to popular phishing targets,
names that mention prohibited activities such as carding, etc.)

Ultimately, you'll typically want to "pivot" from that IP address to
related domain names (start with a clue (that's an IP address) and
follow that lead to the domain names that use that IP)

Searching passive DNS by IP address is a fundamental skill....

Time Fencing: Show Results From Just the Last 90 Days

Operational security analysts often don't care about historical
results. They're intensely focused on what's happening NOW, or
what's just happened in the immediate past.

If that's true for you, maybe limit what you get shown to the last
thirty or ninety days...

$ dnsdb query.py -i 199.48.133.170 --after=90d

A Few Other Ways To Specify Times....

$ dnsdb query.py -i 199.48.133.170 --after=2015-08-22
S dnsdb _query.py -i 128.223.0.0/16 --before=2016-01-01
--after=2015-01-01

$ dnsdb query.py -i 199.48.133.170 --after="2015-08-22
14:36:10"

$ dnsdb query.py -i 199.48.133.170 --before=2013-01-22
S dnsdb _query.py -i 128.223.0.0/16 --after="-3600"

You Can Even Use Raw Unix epoch seconds...
S dnsdb query.py -i 199.48.133.170 --after=1467074500

Basics of working with Unix epoch second dates (on a Mac)...

S date +%s € if you want the current time in seconds
1477022891

$ date -j -f "$b %d %Y $T" "Aug 28 1991 00:00:00" "+%s"
683362800

S date -r 683362800
Wed Aug 28 00:00:00 PDT 1991 57

What If You Want To See What's In A CIDR Netblock?

Sometimes you want to see what's in an entire net block, not just
what's related to a single IP address:

S dnsdb query.py -i 199.48.128.0/21 > temp.txt
$ we -1 temp.txt

10000 temp.txt € max of 10,000 results by default

If you need more results, increase the max results limit...

S dnsdb _query.py -1 1000000 -i 199.48.128.0/21 >
temp. txt

$ we -1 temp.txt
22205 temp.txt
$ more temp.txt
rootbsd.daleco.biz. IN A 199.48.129.182
[etc]

What If I'm Interested in IPv6 Addresses or Blocks?

$ dnsdb query.py -i 2607:£010:2e8:228:0:£ff:£fe00:152
gateway.lb.i1t.ucla.edu. IN AAAA
20607:£010:2e8:228:0:£f£:£e00:152
gateway-v6.lb.1it.ucla.edu. IN AAAA
2607:£010:2e8:228:0:£f£:£e00:152

S dnsdb query.py -i 2607:F010::/32 > temp.txt

$ we -1 temp.txt

932 temp.txt

$ more temp.txt

ip-list.emileaben.com. IN AAAA 2607:£010::1
secure.math.ucla.edu. IN AAAA 2607:£f010:2a8:8fed::44
secure.math.ucla.edu. IN AAAA 2607:£f010:2a8:8fed::45
webmail . .math.ucla.edu. IN AAAA 2607:£f010:2a8:8fed::211
webmail?.math.ucla.edu. IN AAAA 2607:£f010:2a8:8fed::211
[etc]

59

How About An Arbitrary Network IP Range?

$ dnsdb query.py -i 199.48.128.33-199.48.128.43
nsl.whittingtonpark.org. IN A 199.48.128.42
ns2.whittingtonpark.org. IN A 199.48.128.42
nsl.musicman.com. IN A 199.48.128.34

[etc]

But that output is unsorted! What if we want it sorted by IP?

$ dnsdb query.py -i 199.48.128.33-199.48.128.43 --sort
rdata

nsl.musicman.com. IN A 199.48.128.34
drjohngreenphotos.com. IN A 199.48.128.34
persianenglishtranslations.com. IN A 199.48.128.34
ilcr.x.rootbsd.net. IN A 199.48.128.34

[etc]

60

Some -1 Sorting Notes

"valid sort keys are count, rdata, rrname, rrtype, zone_time_first,
zone_time_last"

To reverse the sort order, specify -R (or --reverse). No ability to sort
by multiple keys (e.g., you can't sort by IP and then rrname within IP)

But try:

$ dnsdb query.py -i 199.48.128.33-199.48.128.43 | grep
-v ";;" | awk '{print $3 " " $1 " " $2}' | sort -u | awk
'"{print $2 " " $§3 " " §$1}'

drjohngreenphotos.com. A 199.48.128.34
ilcr.x.rootbsd.net. A 199.48.128.34
nsl.musicman.com. A 199.48.128.34

persianenglishtranslations.com. A 199.48.128.34
[etc]

Some Of The Sort-Related Jargon...
count=number of times DNSDB has seen this unique RRset

rdata=right hand side of the record (e.g., the IP info for "A" records)
For "ucla.edu. IN A 128.97.27.37", the rdata is 127.97.27.37

rrname=left hand side of the record (e.g., the domain name for "A"
records). For "ucla.edu. IN A 128.97.27.37", the rrname is ucla.edu

rrtype=is this an "A" record? a "AAAA"? an "NS" record? a "CNAME?"
an "MX" record? an "SOA"? For "ucla.edu. IN A 128.97.27.37" the
rrtype is "A"

zone_time_first, zone_time_last=for data gleaned from ICANN zone
files, when was the first time the record was seen? when was the last
time it was seen?

5) Searching Domain Names Seen On
The LEFT Side ("rrnames”

-I

If You've Got A Domain Name and Want To Know
The IPs It Has Used, Think "I'll make a -r query™

S dnsdb _query.py -r farsightsecurity.com/A --sort
time last

;; bailiwick: farsightsecurity.com.

7 count: 628

;; first seen: 2013-07-17 22:08:50 -0000

;7 last seen: 2013-09-25 15:47:47 -0000
farsightsecurity.com. IN A 149.20.4.207

;; bailliwick: farsightsecurity.com.

F count: 6,350

;; first seen: 2013-09-25 15:37:03 -0000
;; last seen: 2015-04-01 06:17:25 -0000
farsightsecurity.com. IN A 66.160.140.81
[etc]

["valid sort keys are bailiwick, count, rdata, rrname,
rrtype, time first, time last"]

64

Selecting Just A Specific DNS Record Type

On the preceding slide, we specified:
S dnsdb _query.py -r farsightsecurity.com/A --sort
time last

That returned only "A" (name to IPv4 address) records. Other
options:

AAAA =» name to IPv6 address records

CNAME =» aliases for other names

NS =» name server records

TXT = txt records

SOA = start of authority records

MX =» mail exchanger records

PTR =» pointer (or "inverse address" records)
SRV =» server records

RRSIG =» one of several types of DNSSEC records

Find All *.farsightsecurity.com Hostnames With
"AAAA" Records, Seen Since 1-May-20167?

S dnsdb query.py -r *.farsightsecurity.com/AAAA --
after=2016-05-01 --sort=count --reverse €& Note use
of a backslash to avoid shell expansion of the asterisk

;; bailiwick: farsightsecurity.com.

H count: 17,1060

;; first seen: 2015-04-01 13:05:08 -0000

;; last seen: 2016-06-27 14:15:53 -0000
dl.farsightsecurity.com. IN AAAA 2620:11c:£f004::105

;; bailliwick: farsightsecurity.com.

- count: 7,903

;; first seen: 2015-04-09 13:31:11 -0000

;; last seen: 2016-06-27 09:16:20 -0000

www. farsightsecurity.com. IN AAAA 2620:11c:£004::104
[etc]

Show Me All Domains Containing *paypal™ ...

You CAN'T search for *paypal* (at least not via the DNSDB API; you
CAN do this via direct access to raw DNSDB files via DNSDB Export).

You CAN do a left hand wildcard OR a right hand wildcard, but not
both at the same time. You also can't do an embedded ("middle")
wildcard search (foo*info)

WORKS:

S dnsdb_query.py -r _dkim._domainkey.*/TXT > temp.txt
[shows DKIM TXT records]

[right hand queries can be potentially time consuming to run!]

WORKS:

S dnsdb_query.py -r *.va > temp2.txt

[this command shows all domains in the Vatican's ccTLD]

[do not try this for larger domains, remember: <=1,000,000 results!]

More -r "Wildcarding" Notes

Wilcarding happens for an entire dot-delimited label, not just part of dot-
delimited labels. If we're interested in stuff related to "stsauver"....

$ dnsdb query.py -r *tsauver.com
HTTP Error 404: Not Found

$ dnsdb query.py -r stsauve*
HTTP Error 404: Not Found

vs.ll.

$ dnsdb query.py -r *.stsauver.com > temp.txt
$ wc -1 temp.txt
118 temp.txt

Wildcards CAN match one OR MORE entire labels (e.g., a wildcard will find
subdomains (multiple labels) rather than just matching within a single label):

S dnsdb query.py -r *.uoregon.edu/A | grep
www\ .cs\.uoregon.edu | uniqg
WWW.Cs.uoregon.edu. IN A 128.223.4.25

IDNs? Yes -- In Punycode Format

$ dnsdb_query.py -r www.bbc.* does NOT find www.bbc.f£%%
(display-format simplified Chinese Internationalized Domain Name TLD
meaning "online")

Convert the display format label www.bbc.f£24% to punycode via
the converter that's at http://mct.verisign-grs.com/, then try:

S dnsdb query.py -r www.bbc.xn--3ds443g
the punycode'd version of that domain also isn't found...
We do have SOME punycode'd domains for that TLD, however:

S dnsdb query.py -r *.xn--3ds443g | wc -1
02277

FWIW, a list of all IDNs (actually, all top level domains) can be found at
https://en.wikipedia.org/wiki/List_of Internet_top-level _domains

6) Match Domain Names Seen On The RIGHT
Side ("rdata"), Typically Used To Find
Domains Sharing The Same Name Server

Or Domains Sharing a Common Mail Server

-1

If You've Got a Name Server's FQDN, Think -n

S dnsdb _query.py -n phloem.uoregon.edu/NS > temp.txt
$ we -1 temp.txt

1575 temp.txt
S more temp.txt
uoregon.biz. IN NS phloem.uoregon.edu.
maoz.com. IN NS phloem.uoregon.edu.
bogus.com. IN NS phloem.uoregon.edu.
Jhome.com. IN NS phloem.uoregon.edu.
o—-glig.com. IN NS phloem.uoregon.edu.
otsys.com. IN NS phloem.uoregon.edu.
flyeug.com. IN NS phloem.uoregon.edu.
[etc]

What will -n return besides NS records? You may see SOA's, PTR's,
CNAME's, MX's — IF you don't limit the records returned to just /NS's

71

List Just Effective 2"9-Level Domains From a NS
Search (Also Omitting Any .arpa. Domains)

S dnsdb _query.py -n phloem.uoregon.edu/NS | awk '{print
$1}' | 2nd-level-dom | grep -v "\.arpa\." | sort -u >
temp. txt

$ more temp.txt
1-4-5.net.
3bcomm.gqg.
55tours.t].
aboutlanegov.com.
ac.ci.

ac.mz.
agd.gov.jm.
aha-intl.org.
ahastudyabroad.com.
[etc]

The Little 2nd-level-dom Script

#!/usr/bin/perl
use strict;
use warnings;
use I0::Socket::SSL::PublicSuffix;
my Spslfile = 'your path here/effective tld names.dat';
my Sps = IO::Socket::SSL::PublicSuffix->from file(Spslfile);
my $line;
foreach $line (<>) {
chomp ($1line) ;
my Sroot domain = S$ps->public suffix($line,1);

printf("%s.\n", Sroot domain);

The required data file? See https://publicsuffix.org/list/

Testing the 2nd-Level Domain Script....

S echo "www.bbc.co.uk" | 2nd-level-dom
bbc.co.uk
$ echo "www.cs.uoregon.edu" | 2nd-level-dom

uoregon.edu

$ echo "www.springfield.kl2.or.us" | 2nd-level-dom
springfield.kl2.0or.us

WHY would you want to do this sort of domain name reduction?
Imagine a large file with thousands of wildcarded domains... you
may not care about the random leading gibberish, you just want the
base (effective 2"%-level) domains...

Why Do You Call Them Effective 2"¥ Level Domains?

For "normal" top level domains, such as dot com, new domains are
registered immediately under the top level domain. For instance,
example.com is a typical hypothetical 2" level domain.

Other pseudo TLDs, such as dot co dot uk, may actually see many domains
registered as what look like "third" level domains (e.g., because .co.uk
"uses up" the first and second level domains). Because of the effective 2@
level domain concept, "co.uk" gets treated as a single "chunk," as if it were
its own TLD.

Some domains may even have longer effective TLDs, such as k12.or.us,
leading to effective 2" level domains such as springfield.k12.or.us
(the three domains, k12.or.us, gets treated as a single "chunk")

See the list at https://publicsuffix.org/list/public_suffix_list.dat

Another Example:
Finding Domains That Share a Common Mail Server

S dnsdb _query.py -n mx.berkeley.edu/MX > temp.txt

$ we -1 temp.txt
292 temp.txt

$ more temp.txt

athletics.calbears.com.
engineeringpathway.com.
engineeringpathway.com.

berkeley.edu. IN MX
berkeley.edu. IN MX
ce.berkeley.edu. IN
ce.berkeley.edu. IN
cs.berkeley.edu. IN
[etc]

10
15
MX
MX
MX

IN MX 5 mx.berkeley.edu.
IN MX 10 mx.berkeley.edu.
IN MX 15 mx.berkeley.edu.
mx.berkeley.edu.
mx.berkeley.edu.
10 mx.berkeley.edu.
15 mx.berkeley.edu.
5 mx.berkeley.edu.

7) Formatting CLI Query Output

Choice of Output Formats for dnsdb_query.py
* The default output format for dnsdb_query.py is plain text
 However, at your option, you can also request JSON output:

S dnsdb_query.py -r stsauver.com/A -j

{"count": 3617, "time_first": 1407639108, "rrtype": "A",
"rrname": "stsauver.com.", "bailiwick": "stsauver.com.",
"rdata": ["199.48.133.170"], "time_last": 1467065919}
{"count": 5, "time_first": 1321883198, "rrtype": "A", "rrname":
"stsauver.com.", "bailiwick": "stsauver.com.”, "rdata":

["209.151.96.70"], "time_last": 1385778016}

* JSON output can be "pretty printed" using jq
See https://github.com/stedolan/jq for information on jq
Tips on using https://stedolan.github.io/jq/

Sample jg-formatted Output From dnsdb_query.py

S dnsdb_query.py -r stsauver.com/A -j | jg '.'
{
"count": 3617,
"time_first": 1407639108,
"rl"type": IIAII’
"rrname": "stsauver.com.",
"bailiwick": "stsauver.com.",
"rdata": |
"199.48.133.170"
1,
"time_last": 1467065919

}
[etc]

Outputting Just One Selected Field With jq

$ dnsdb query.py -r farsightsecurity.com/A -3j |
jq .rdata | tr -d '[]" ' | grep -v "~A§"
66.160.140.81

104.244.13.104

149.20.4.207

Translating...

-- jq .rdata
Select the rdata values from JSON output

—— tr _d I []H '
Delete any square brackets, double quotes or spaces

—— grep - HA$H
Delete any blank lines

Reversing Domains For Ease of Sorting

S dnsdb_query.py -1 1000000 -i 104.140.106.223 | awk '{print S1}' |
2nd-level-dom | reverse-domain-names | sort -u > temp.txt
S wc -l temp.txt
704 temp.txt
S more temp.txt
date.15cmw
date.4a7pb
date.bhj6k
date.d19rq
date.d4ors
date.fqgdO
date.g69vs

date.gctgn
[etc]

The Little reverse-domain-names Script
#!/usr/bin/perl

my @lines = <>;

chomp @lines;

@lines =
map { join ".", reverse split /\./ }
sort

@lines;

print "$ \n" for @lines;

8) Querying DNSDB At Scale:
Querying For The Domains In All Prefixes
Announced by an Autonomous System

Gentle reminder: You've only got a modest 100 queries/day
qguota, so be careful you don't exhaust ALL your queries with
just one or two runs of this sort. Each time you do a

dbsdb _query.py command, that "counts" against your
limited quota, and some ASNs may have scores or even
hundreds of prefixes!

What If We Want To Look At All Prefixes For An ASN?

Assume we want to look at the domains found in passive DNS for "all
prefixes associated with the ASN that's routing 104.140.106.223"

Begin by mapping the IP to ASN (see the script on the next page):

$ ip2asn 104.140.106.223
62904 104.140.106.223

Now go to Hurricane Electric's BGP data site and check it for AS62904
to find the full list of associated prefixes...

http://bgp.he.net/AS62904# prefixes
http://bgp.he.net/AS62904# prefixes6

We'll just do the IPv4 ones for now (feel free to do the IPv6 ones as
an exercise)

The ip2asn Script (As Used On The Previous Page)
#!/bin/sh

origip= echo $1°

revip="echo $1 | sed "s/\([0-9]*\)\.\([0=-9]*\)
NN ([O0=9T*\)N.N([0=-9]*\)/\4.\3.\2.\1/""
listing= host -w -t txt $
{revip}.asn.routeviews.org 2>/dev/null | tail
_1 N

listing2= echo ${listing} | awk '{print $4}'"' |
sed 's/"//g'"

echo "S${listing2} S{origip}"

Processing the HE BGP Data To Build The Queries...

Copy the prefixes from http://bgp.he.net/AS62904# prefixes
and paste them into the temporary file called temp.txt

Massage temp.txt, keeping just the first column...
S awk '{print $1}' < temp.txt | sort -u > temp2.txt

Reformat the resulting file with vi (or your favorite editor)
S vi temp2. txt

[manually dd (e.g., delete) any lines other than CIDR
prefixes, then add on....]

:1,$s/”/dnsdb query.py -1 1000000 -1 /

:1,$s/S/ >> temp3.txt ; sleep 2/

.1

[x out (delete) one of the > signs on the first 1line]
T W(Q

This should leave you with a file that looks like the following...

dnsdb_query.py -1 1000000 -i 104.140.104.0/22 > temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.140.140.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.140.184.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.140.216.0/24 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.140.223.0/24 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.140.252.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.140.68.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.140.80.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.193.40.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.206.104.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.206.116.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.206.144.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.206.156.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.206.172.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py - 1000000 -i 104.206.176.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 104.206.178.0/23 >> temp3.txt ; sleep 2
[...]

dnsdb_query.py -1 1000000 -i 50.3.240.0/22 >> temp3.txt ; sleep 2
dnsdb_query.py -1 1000000 -i 75.75.227.0/24 >> temp3.txt

Now Process Those Queries...

S time sh -x temp2.txt

real 7m50.108s € less than 8 minutes wall clock time
user 1m45.125s

SysS Om13.536s

S wc -l temp3.txt

2990981 temp3.txt € nearly 3 million total results
S more temp3.txt

nsl.finalhost.biz. IN A 104.140.104.100
nsl.betterhosting.biz. IN A 104.140.104.100
ns2.finalhost.biz. IN A 104.140.104.101
ns2.betterhosting.biz. IN A 104.140.104.101
nsl.jindalbullion.biz. IN A 104.140.106.228
ns2.jindalbullion.biz. IN A 104.140.106.228
nsl.servicioscloudperu.com. IN A 104.140.104.20

[etc]

Simplify The Results, Output-ing The Largest Results

S time awk '{print $1}' < temp3.txt | 2nd-level-dom | sort | uniq -c
| sort -nr > temp4.txt
real 1m46.661s
user 1m>50.297s
sys Om1.216s

S wc -l temp4.txt
84031 temp4.txt

S more tempd4.txt
277476 seguards.su.
86621 bai.su.

78603 xstats.su.
/75081 westats.cc.
72534 sxo.su.

57789 sge.su.

[etc]

9) Administrivia and Debugging

Out of Queries?

Most DNSDB accounts have a limited quota of queries (unless you
have a DNSDB account that's been configured to have an unlimited

number of queries). You can check to see how many queries you've
got left with code such as:

S curl --header "X-API-Key: PutYourLongNumericAPIKeyHere" \
https://api.dnsdb.info/lookup/rate_limit

{
"rate": {
"reset": "n/a",
"limit": "unlimited",
"remaining": "n/a"
}

}

Some dnsdb_query.py Errors

$ dnsdb query.py foo.com
Usage: dnsdb query.py [options]

[followed by the full command line syntax summary]

You forgot to specify -i, -r, or -n or otherwise mis-entered
something — the dnsdb_query.py client can't figure out what
you're trying to do

S dnsdb query.py -i stsauver.com
HTTP Error 400: Bad Request

In this example, you supplied a domain name as a -i parameter.
The -i parameter needs an IP address, address range, or CIDR
prefix, not a domain name.

dnsdb_query.py Errors (continued)

S dnsdb query.py -r 128.223.32.35
HTTP Error 404: Not Found

You supplied an IP address to a -r parameter, which searches the
left hand side. There are no IP addresses on the left hand side,
and cannot be. A -r parameter needs to be given a domain name

"Q. But Joe! What about in-addrs? They're on the left side, right?"

A. Yet, but in-addr's are actually names, not a purely numeric IP
address...

Searching For An in-addr.arpa

$ dnsdb query.py -r 35.32.223.128.in-addr.arpa
223.128.1n-addr.arpa.

- bailiwick:
rr count:
;; first seen:

H last seen:
35.32.223.128.

180,166

2010-06-24 14:40:38 -0000
2016-006-28 01:18:28 -0000

in-addr.arpa.

Contrast that result with with:
$ dnsdb query.py -i 128.223.32.35

phloem.uoregon.edu.

c.ns.usac.edu.

[etc]

IN PTR phloem.uoregon.edu.

IN A 128.223.32.35

gt. IN A 128.223.32.35

Note: some pDNS imputed IP RRs may not be trustworthy, and in-
addrs are definitely able to be used in misleading ways.

10) Farsight's Splunk Plugin and Passive DNS

How Does Splunk "Fit?"

* Splunkis a very popular log management tool, terrific for digging
into syslog data and similar data sources. Multiple versions of
Splunk are available, including a free version, and trial versions of
the Enterprise and Cloud versions.

* The Farsight Splunk plugin requires use of the Enterprise version
of Splunk. To get a free 60 day trial of Splunk Enterprise
(registration required; limited to indexing 500MB of data per day):

https://www.splunk.com/en_us/products/splunk-enterprise.html

You can even install and run the trial version of Enterprise Splunk
and the Farsight DNSDB plugin on your Mac!

* The installation is pretty straightforward.

Installation Is Straightforward on the Mac

>

.background .payload .JTrashes

Volumelcon.icns

~
Install Splunk

E Splunk 6.5.0

9/

Introduction
License
Destination Select
Installation Type

Installation

Summary

Installation (2)

t
Standard Install on “New Macintosh HD”

This will takqg 484.2 MB §f space on your computer.

Click Install to perform a standard installation of this software
on the disk “New Macintosh HD".

Change Install Location...

Go Back Install

98

Once You've Got Splunk Installed,
Launch It From Your Desktop

localhost:8000/en-US/account/logout c Search

®] e
Walathnald aldliafa
el B 3 @] o Y e 2 k - X
P W | ; 1 S . B N Jeas 2 %
[S B H ©Su S R 3 l & y ¥ P
|
admin £ Signin

First time signing in?

The Farsight Security Splunk Plugin

 To get the plugin, see:
https://www.farsightsecurity.com/FarsightDNSDBforSplunk/

https://splunkbase.splunk.com/app/3050/

https://www.farsightsecurity.com/splunk/
FarsightSplunkAppUserGuide.pdf € must-have guide!

* Note that you will need a Farsight APl key to use the DNSDB plugin
for Splunk. Your regular DNSDB API key will work fine for this
purpose.

What You See After You Download the Splunk Plugin

X

Thank You

Downloading Farsight DNSDB for Splunk

MD5 checksum (farsight-dnsdb-for-splunk 101.tgz)
188a52f070d1168d1feb05d9372£fc83e

To install your download
For instructions specific to your download, click the Details tab after closing this window.
To install apps and add-ons from within Splunk Enterprise

1. Log into Splunk Enterprise.

2. On the Apps menu, click Manage Apps.

3. Click Install app from file.

4. In the Upload app window, click Choose File.

5. Locate the .tar.gz file you just downloaded, and then click Open or Choose.
6. Click Upload.

7. Click Restart Splunk, and then confirm that you want to restart.

To install apps and add-ons directly into Splunk Enterprise

101

Confirming The Integrity Of That Download On A Mac

It's always good to confirm the integrity of your
downloads, including the Farsight Splunk plugin:

S /sbin/md5 farsight-dnsdb-for-splunk_101.tgz
MDS5 (farsight-dnsdb-for-splunk_101.tgz) =
188a52f070d1168d1feb05d9372fc83e

The quoted checksum matches the highlighted value on
the welcome message shown on the preceding screen,
so you're good to install as described on the preceding

screen.

The Splunk DNSDB Ad Hoc Query Interface In Action

A € (O localhost:8000/en-US/app/SA-FarsightDNSDB/dnsdb?form.dashboard_time.earliest=08&form.dashboard_ c Q search o E o o @ =

splunk App: Farsight DNSDB for Splu... v Joe St Sauver v Messages v Settings v Activity v Help v

F<RSIGHT

SECURITY

D N S D B Edit Export v

Select a time range Select RRTYPE OR Add Custom RRTYPE Enter an IP or Domain Name

All time v Any Qv ANY www.cornell.edu m Hide Filters

DNSDB Search Account E-Mail Support Call Us Toll Free: 855-489-7919

DNSDB RDATA Results

RRType RData RRName Time First Time Last Zone Time First Zone Time Last rdata_tok Count
CNAME [2 www.cornell.edu. [2 as26.http.sasm3.net. 03/21/13 17:04:09 08/06/16 04:51:33 N/A N/A set 70
DNSDB RRSET Results

RRName Time First RData Time Last RRType bailiwick Zone Time First Zone Time Last rrset_tok Count
[2 www.cornell.edu. N/A [2 cfprod2.cit.cornell.edu. 01/11/11 02:01:33 CNAME cornell.edu. N/A N/A set 366764
[2 www.cornell.edu. N/A [2 pineapple.cit.cornell.edu. 01/08/11 17:04:08 CNAME cornell.edu. N/A N/A set 0
[2 www.cornell.edu. N/A [2 wwwecornelledu-ssl.cit.cornell.edu. 06/28/15 03:02:37 CNAME cornell.edu. N/A N/A set 1116031
[2 www.cornell.edu. N/A [2 Ib-cornelledu-univcom-prod.cit.cornell.edu. 10/03/16 17:20:07 CNAME cornell.edu. N/A N/A set 2410629

103

Using The DNSDB Splunk Connector More Aggressively

* While you can use the Farsight plugin for Splunk as just another
web interface for making manual ad hoc DNSDB queries, the
Splunk plugin really shines as an automated way to enhance
large databases you import into Splunk.

* Note: enhancing large datasets can generate a large number of
DNSDB queries. Because your training query quota is very

modest, we are NOT going to show you how to use Splunk this
way today.

11) Making Programmatic
Passive DNS Queries With libcurl

libcurl

To make RESTful TLS-protected queries against the DNSDB API
from your own code, you'll want a library to handle the TLS "heavy
listing" work.

| chose libcurl, the API version of the command line web client we
all know and love. See https://curl.haxx.se/libcurl/

Installation instructions are available at
https://curl.haxx.se/docs/install.html

Documentation is available at https://curl.haxx.se/libcurl/

If you want to check out other alternatives, take a look at
https://curl.haxx.se/libcurl/competitors.html

A Few Quick libcurl Notes

* Libcurl is under active development.

The version | installed and used for the following sample was:

$ curl-config --version
libcurl 7.50.3 [released on Sept 14, 2016]

* Release history? See https://curl.haxx.se/docs/releases.html

* Lots of work on-going, see https://curl.haxx.se/changes.html
Always use a current version of libcurl

Be sure that your copy of openssl is fully up-to-date, too

Skeleton libcurl DNSDB Query C Language Code

S cat sample.c

#include <stdlib.h>
#include <string.h>
#include <curl/curl.h>

int main (void)
{

CURL *curl;
CURLcode res;

char mydomain[1024], tempstring([1024],
fullcommand[1024];

/* initialize curl. call this once and only once. */
curl global init (CURL GLOBAL ALL);

Sample libcurl code (2)

while (scanf ("%s",mydomain) == 1)

{

/* build the command we want to pass to curl */

/* all our commands use the same basic RESTFUL API
endpoint... */

strcpy (fullcommand, "https://api.dnsdb.info/lookup/rrset/
name/") ;

/* now tack on the domain */

strcpy (tempstring, mydomain) ;
strcat (fullcommand, tempstring) ;

/* just give me a token dozen results */
strcpy (tempstring, "?1limit=12");
strcat (fullcommand, tempstring) ;

/* get curl ready for action */
curl = curl easy 1nit();

Sample libcurl code (3)

/* pass the API key */
struct curl slist *chunk = NULL;

chunk = curl slist append(chunk, "X-API-Key:
YourActualAPIKeyHere") ;

res = curl easy setopt(curl, CURLOPT HTTPHEADER, chunk);

/* do the actual curl command */
curl easy setopt (curl, CURLOPT URL, fullcommand);

res = curl easy perform(curl);

1f (res != CURLE OK) { return(EXIT FAILURE); }

curl easy cleanup(curl);

}

curl global cleanup();
return (EXIT SUCCESS) ;
}

Sample Run

S cat test-domains. txt

WWW.Stsauver.com
[etc]

S gecec -Wall -03 -o sample sample.c -I/usr/local/include
-L/usr/local/lib/ -1lcurl

S ./sample < test-domains.txt > output.txt

S less output. txt

;; bailliwick: stsauver.com.

- count: 1

;; first seen: 2011-04-30 04:19:39 -0000
;; last seen: 2011-04-30 04:19:39 -0000
www.stsauver.com. IN A 209.151.96.70
[etc]

Notes About That Sample API Invocation

* That's just a proof of concept/illustration, it is NOT meant as
production grade code (it would need to be a lot more paranoid
about the way it handles some things, including doing extensive
data sanitization and error checking). You've been warned!

* You can (and should!) do better, after getting the sample code to

actually run, assuming you're a programmer interested in doing
SO.

Exercises

a) Get the dnsdb_query.py client installed and running. Successfully
make a couple of test queries, perhaps:

S dnsdb query.py -r m3aawg.org/A --after=30d
S dnsdb query.py -i 67.192.153.75 --after=30d

b) What 2"d-level domains share the same netblock as m3aawg.org?
(note: this requires you to install the little 2nd-level-dom script):

$ dnsdb query.py -i 67.192.153.64-67.192.153.95
-—after=30d | awk '{print $1}' | 2nd-level-dom |
sort -u > temp.txt

c) Find some IPs from messages in your spam folder. Try using the

passive DNS API to investigate them. If you have no spam message of
your own to "mine", perhaps see:

-- https://www.spamhaus.org/sbl/latest/
-- http://www.senderbase.org/static/spam/#tab=2

This Ends Part Il

This is another opportunity for you to "escape,”" whether because
your head is full, or because you don't need a review of DNS.

Again, however, we'd encourage you to consider staying for the
rest of what we'll cover if you can.

Referring to Computers on the Internet

Internet users refer to Internet sites by their domain names.
A domain name that refers to a specific site is normally referred
to as a "Fully Qualified Domain Name" or "FQDN." The FQDN of a

typical web server might be www.farsightsecurity.com

FQDN's normally resolve (or "get translated into") numeric IP
addresses.

FQDNSs can also be set up as an alias for another domain name.
And of course, typo'd/broken FQDNs may not resolve at all.

Notionally, we can represent this process as shown on the
following slide...

Notional Diagram Showing Web Browser Relying
On Domain Name System For the Information
Needed To Reach A Web Server

[Web Browser J\
Internet

[Domain Name System J

Internet

[Web Server J

The Description In The Preceding Section Was Highly
Simplified. For Example, Caching Was Omitted

If we drill down, there's a lot more that's going on. A lot of what
happens is designed to ensure that unnecessary work is avoided,
and performance remains good even as DNS usage scales up.

Caching (or "saving recently-received results") is a big part of that
strategy.

Pretty much all parts of the DNS ecosystem strive to remember
what they've recently seen so they don't need to repeatedly ask —
time after time after time — for answers to the same questions.

This is key for DNS use by highly popular sites such as Amazon,
Google, Facebook, Twitter, YouTube, online advertising sites, etc.

Depending on how often things might need to change, answers
may only be cached for some few seconds, while in other cases,
answers may be made to persist for hours, days or even weeks —
each domain administrator can pick what they think is best.

Time-To-Live Value (TTLs)

e (Cache durations are controlled by Time-To-Live values ("TTLs").
TTLs are specified in seconds. You'll see them (among lots of
other places) in the output from the Unix "dig" command:

$ dig www.farsightsecurity.com

[...]
www.farsightsecurity.com. 3589 1IN A 104.244.13.104

[snip]

These TTLs "decrement," or "cook down." Rechecking a bit later:

$ dig www.farsightsecurity.com

[...]
www.farsightsecurity.com. 3541 1IN A 104.244.13.104

[snip]

When the TTL hits O, the saved data will be discarded from the
cache.

Should TTLs Be Long or Short, and Why?

 Long TTLs (e.g., tens of thousands of seconds) mean:

— Fewer queries for the name servers to service, which
translates to lower name server load

— If a remote name server does go down, local name servers
that have cached values may not even notice

— On the other hand, if you need to change the address that a
server is using, you'll need to wait while a long TTL "cooks
down" and expires so that the new value can get discovered.

e Short TTLs (hundreds of seconds) mean:
— The name servers will see more requests

— Resolution may be slightly slower (as some stuff that could
have been efficiently cached gets re-looked-up)

— You've got reduced breathing room in an outage, BUT more
flexibility if you need to make an "emergency change" (as in
cases where you may be dealing with a DDoS attack)

Nsuccessful Resolutions

What if a domain name CANNOT be successfully resolved?
Should that NEGATIVE information be remembered, too?

Why sure! What's the point of asking:

"Do you know how to resolve asodaosdjasodjasodasd.com? No?
Okay." and then potentially immediately repeating that question
again, and again, and again, and again....

The idea of remembering the fact that a domain name could NOT
be resolved is customarily known as a "negative TTL."

Negative TTLs, like most DNS things, are defined in RFCs.

RFCs are "Requests for Comments," Internet Engineering Task
Force technical standards. (Name notwithstanding, by the time
they're published, no additional audience input is actually being
solicited.)

Anyhow, see https://tools.ietf.org/html/rfc2308 for details about
negative TTLs.

Distributed Name Servers, Not One Central One

Another thing that was simplified in the earlier diagram was the
way name servers were represented. The Domain Name System
was just shown in that diagram as one "blob."

In fact, there is no single central unified "god" name server that is
omniscient about all the domain names on the Internet.

Instead, there's a distributed set of name servers that work
together to resolve domain names "collaboratively" as required

Resolution begins with the root of the domain name tree (".").
After that, authoritative name servers provides information about

a domain name, OR pointers ("referrals") to a name server that
will get you closer to completing resolution of your domain name.

llHuh?ll

Start with the stub resolver (a very simple name server) running
on the user's laptop.

If the stub resolver hasn't recently cached the answer to a
particular DNS query, the stub resolver asks the user's ISP's
recursive resolver for help. Does the ISP's recursive resolver
know how to resolve that name?

If the ISP's recursive resolver doesn't have the required bit of
information cached, the recursive resolver begins asking a series

of questions of authoritative name servers in order to find the
ultimate answer.

See the diagram on the following slide.

Laptop

)

p
[Web Browser]—[Stub Resolver

DNS Cache

- J

Inte[net

[www.farsightsecurity.com]

How It Works

1) User puts www.farsightsecurity.com nto
their web browser

2) Browser automatically asks caching stub
resolver (running on the laptop), “What’s
the IP address for www.farsightsecurity.com?”

3) If stub resolver already knows, it replies with
that IP address. If it doesn’t know, it asks the
recursive resolver. The recursive resolver is
usually run by the Service Provider for use by
all the SP’s customers.

DNS Cache

Recursive Resolver

Nameservers

[Authoritative]

Domain Name System

4) If the recursive resolver already knows, it replies with that IP
address. If it doesn’t know, it asks the authoritative name servers.

5) When the recursive resolver receives the IP address answer to
it’s query from the authoritative name servers, it tells the stub
resolver, which tells the web browser. The caching recursive
resolver also remembers the returned IP address (for a while),

in case the same question gets asked again relatively soon.

124

DNS Resolution Is Iterative, and Recursive

In the worst case, a name server is brand new and knows nothing
but the address of the DNS root servers ("dot"). It would begin by
asking the root name servers, "Hey, what's the address of the
name servers that know about dot com?"

After it learned the address of the dot com name servers, it
would ask one of those name servers, "OK! Now let me ask you:
what's the address of the name servers that know about the
domain farsightsecurity.com?"

After it learned the address of those, it would finally ask one of
them, "Hey, what's the address of www.farsightsecurity.com?"

This process is shown diagrammatically in the following graphic.

What’s the IP address of
www.farsightsecurity.com?
I’ll ask the recursive resolver!

First step...

Second step...

Final step...

——=3» Recursive Resolver

\ 4

| know the (static) address
of the root name servers.
Let me ask one of them
for an address of one of
the authoritative servers
for dot com...

The Authoritative
Server Says...

(k.root—servers.net

(at the bootstrap
address 193.0.14.129)
says “one of the name
servers for dot com is
e.gtld-servers.net

s

Now that | know the address
for a dot com name server,
let me ask it for the address

of one of the authoritative

\

servers for farsightsecuity.com

—>
->

/

¥

Now that | know the
address for one of the
farsightsecurity.com name
servers, let me ask it for
the address of the
www.farsightsecuity.com

S

¥

—

at 192.12.94.30"

J
-
e.gtld-servers.net
(at the IP address
192.12.94.30) says “one

of the name servers for
farsightsecurity.com is
ns5.dnsmadeeasy.com at
\2@8.94.148.13"

-

ns5.dnsmadeeasy.com

(at the IP address
208.94.148.13) says

“the address for

www . farsightsecurity.com
is 104.244.13.104"

g

J

Redundant Authoritative Name Servers

There's still a bit more complexity that has been omitted from the
diagrams you just saw, and that relates to redundancy:

name servers are "critical infrastructure" and you always want
them to work. That normally means deploying "more than one of
them," even if we didn't show that on the preceding diagrams.

This means that there will be multiple root servers, multiple top
level domain servers, and multiple authoritative name servers.

By deploying multiple name servers, even if one (or more) servers
is down or unreachable, one of the others can respond, instead.

Q: "But how do they stay synchronized?" A: "One server acts as
the "master" for each zone. The slave servers periodically check
that master server, and if necessary, downloads updated data."

You can see the presence of redundant name servers in the
output of the Unix "dig +trace" command on the next slides...

How Do We Resolve www.farsightsecurity.com?
(showing redundant name servers at each stage)

$ dig +trace www.farsightsecurity.com
[...]

491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS
491686 IN NS

. 491686 IN NS .root-servers.net.

;; Received 508 bytes from 75.75.75.75#53(75.75.75.75) in 221 ms

[continued]

.root-servers.net. [13 root servers]
.root-servers.net.
.root-servers.net.
.root-servers.net.
.root-servers.net.
.root-servers.net.
.root—-servers.net.
.root-servers.net.
.root-servers.net.
.root-servers.net.
.root-servers.net.

.root—-servers.net.

50 Q QO H OO QO HOR 8w

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

o o
r 7

172800
172800
172800
172800
172800
172800
172800
172800
172800
172800
172800
172800
172800

(continued #1)

IN NS
IN NS
IN NS
IN NS
IN NS
IN NS
IN NS
IN NS
IN NS
IN NS
IN NS
IN NS
IN NS

O O O Q W o 3 ~ Do Q B Hh

.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
.gtld-servers.net.
Received 502 bytes from 192.112.36.4#53(192.112.36.4) in 279 ms

[13 gTLD servers]

129

(continued #2)

farsightsecurity.com. 172800 IN NS nsb.dnsmadeeasy.com. [3 servers]
farsightsecurity.com. 172800 IN NS nsé6.dnsmadeeasy.com.
farsightsecurity.com. 172800 IN NS ns7.dnsmadeeasy.com.

;; Received 184 bytes from 192.43.172.30#53(192.43.172.30) in 85 ms

www . farsightsecurity.com. 3600 IN A 104.244.13.104

farsightsecurity.com. 3600 IN NS ns7.dnsmadeeasy.com. [3 servers]
farsightsecurity.com. 3600 IN NS nsb.dnsmadeeasy.com.
farsightsecurity.com. 3600 IN NS ns6.dnsmadeeasy.com.

;; Received 124 bytes from 208.94.148.13#53(208.94.148.13) in 17 ms

130

No Matter What Gets Shown, There Are Actually
More Than 13 Root/gTLD Name Servers

* While the dig +trace command we just showed mentioned 13
root name servers and 13 gTLD name servers, there are actually
many more than that. This is accomplished via "anycast."

* Anycast involves announcing the *same™ IP address block at
multiple sites. For example, ICANN advertises the "L" root server
IP address block from 158 sites (as of the time this was written),
and the University of Maryland announces the "D" root server IP
address block from 106 sites (as of the time this was written)

* Thanks to the magic of the Internet's wide area routing system
("BGP"), you always automatically end up using the "closest"
instance for any given name server.

Look at Just The Locations Where The "L" Root Lives

) www.root-servers.org ¢ Q search S- B o

Locations: Sjtes: 158

@ Lawronce, nitod Satos

@ Ottawa, Canada J @ Papeete, French Polynesia I Q Paris, France J @ Paris-Orly, France J @ Perth, Australia

[Green=IPv6 enabled; Brown=IPv4 olrgy]

Fully Qualified Domain Name Nomenclature
Decomposing a FQDN, such as www.alumni.caltech.edu, we see:

--edu is a Top Level Domain (TLD)

-- caltech.edu is the 2" Level Domain (what a domain
registrant normally registers with a registrar)

-- alumni.caltech.edu is a subdomain of caltech.edu

-- www.alumni.caltech.edu is the FQDN (or "hostname")

There's also an implicit/unwritten "dot" at the right side of
www.alumni.caltech.edu —that's the "root" of the

entire DNS. It is normally not shown or specified when domain
names are used (although you will see it in DNSDB output)

See the following diagram.

Hierarchical Domains

Root (“dot”)

(on) () (o) (o) (o)

[.berkeley.edu] [calteoh.edu] [.cmu.edu] [.harvard.edu] [.jhu.edu] [.mit.edu] [.rpi.edu]

P N

[alumni.calteoh.edu] [jpl.caltech.edu] [Ilbrary.caltech.] [www.caltech.edu]

\ edu

[maiI.alumni.caltech.edu] [www.alumni.caltech.edu]

Subdomains

In a large organization, some units may be (more-or-less)
autonomous, and might want to manage their own domain
names. For example, a university's engineering school and the
alumni association might both want to run their own DNS.

In that case, the school's central DNS admin team might create
and delegate two subdomains of the institution's domain, e.g.,
engineering.example.edu, and alumni.example.edu

Departmental DNS people might then create FQDN's under that
subdomain, or delegate further sub-sub-domains, perhaps:

-- chemical.engineering.example.edu

-- civil.engineering.example.edu

-- electrical.engineering.example.edu

-- mechanical.engineering.example.edu

And going one step further, a FQDN (hostname) might look like
ilovemanualtransmissions.mechanical.engineering.example.edu

How Do | Know If A Label Is A "Hostname"?

When you see a label such as "alumni.caltech.edu"”, you can't tell
just by looking at it whether that's a hostname in it's own right, or
just a subdomain (with other FQDNs appearing below it), or both.

Caltech.edu (all by itself) might be/is a perfectly OK hostname.

You also can't tell (just by looking at it) whether there's a server
"behind" any given name, or whether all servers are only
assigned below that label, or, for that matter, what a server's
being used for.

Domain name labels can sometimes be used in misleading ways:

-- www.something will often be a web server, but it doesn't have
to be

-- mail.something will often be a mail server, but it doesn't have
to be

-- nsl.something will often be a name server, but it doesn't have
to be

More Than One FQDN May Point At One IP

* For example, imagine a big web server.

* It might host hundreds or even thousands of different smaller
web sites all serviced from a single IP address. For example,
maybe a site has a set of athletic web sites all handled by a big
shared web server:

[football.example.edu] [basketball.example.edu] [baseball.example.edu] [[etc]]
[192.0.2.153]

[Note: 192.0.2.153 is an IP from a special block of IP's reserved for
use in documentation, see https://tools.ietf.org/html/rfc5735]

A Single FQDN May Point At More Than One IP

On the other hand, imagine a really busy web server. A single site
might have so much (potentially crushing!) traffic that it needs
multiple physical servers to handle it all.

* The domain name system makes it easy to accommodate that

load: just point the busy web server name at a set of servers,
each on a different IP address. Traffic gets sent to IPs on a round-
robin basis, much the way a commercial load balancer (such as an
F5 box) often is used....

free-concert-tickets.example.edu

[

192.0.2.25] [192.0.2.30 [192.0.2.34] [[etc]]

A Domain Name Can Point At Another
Domain Name Rather Than At An IP Address

Domain names that point at other domain names are normally
called "CNAMES." You can think of these as additional aliases that

can be used in lieu of a host's primary name. For example:

senate.uoregon.edu. IN CNAME faprod.uoregon.edu.
parking.uoregon.edu. IN CNAME faprod.uoregon.edu.
committees.uoregon.edu. IN CNAME faprod.uoregon.edu.
facilities.uoregon.edu. IN CNAME faprod.uoregon.edu.
courseevals.uoregon.edu. IN CNAME faprod.uoregon.edu.
riskmanagement.uoregon.edu. IN CNAME faprod.uoregon.edu.

[etc]

If faprod.uoregon.edu ever needed to move to a new IP address,
you could just change it, not each and every one of these sites...

IP Addresses Can (Sometimes) Also
Be Mapped Back To A Domain Name

Just as you can map a domain name to an IP address, you can also
(sometimes) map an IP address back to a domain name:

Normal domain name to IP DNS resolution might look like:
drupal-cluster5.uoregon.edu =» 128.223.142.244

Reverse (IP to domain name) DNS resolution might look like:
244.142.223.128.in-addr.arpa =

drupal-cluster5.uoregon.edu

These are normally called "inverse address" or "pointer" records.
Does the following help you to see why?

S dig -x 128.223.142.244

[...]
244.142.223.128.in-addr.arpa. 86400 IN PTR
drupal-cluster5.uoregon.edu.

Generic TLDs (Regular Domain Names)

gTLDs are managed by ICANN, the Internet Corporation for
Assigned Names and Numbers. Traditional generic TLDs
include .com, .net, .org, .edu, .gov, .mil, .int, .biz, .info, .mobi,
.name, .jobs, .me, .xxx, .pro, .aero, .jobs, .asia, .museum, .tel,
and .travel.

Some gTLDs are unrestricted (e.g., anyone can register a domain
in them), such as .com, .net, .org, and .info

Other gTLDs are limited to just particular communities.

For example: .edu's are now limited to just accredited US colleges
and universities; .gov is restricted to just American government
agencies; .mil is limited to just the US Army, Navy, Air Force,
Marines, and Coast Guard; .int is just for international
organizations (such as NATO)

gTLDs are most common, but there are also many other types of
top level domains.

ccTLDs

* ccTLDs are two letter "Country Code" top level domains such as:

.ar Argentina .au Australia .be Belgium

.br Brazil .ca Canada .ch Switzerland
.co Colombia .cn China .de Germany
.es Spain .eu European Union .fr France

.in India it Italy .nl Netherlands
.pl Poland .ru Russia .tk Tokelau

.uk United Kingdom .us United States etc.

* Most ccTLD abbreviations are self explanatory, but there are
some noteworthy exceptions such as ch= Switzerland (Cantons of
Helvetica), de=Deutschland, dz = Algeria (Dzayer in Berber), etc.

* There are 254 ccTLDs in total, see the country code TLDs listed
as part of https://icannwiki.com/CcTLD

Weird ccTLD Factoids

So-called "open" ccTLDs have been "disconnected"” from the
countries they're named after. For example, .tk was sold by the
Tokelau government and is now largely used for free domain
registrations (and not by the 1,400 or so people of Tokelau)

Some ccTLDs register new 2"9-level domains differently

than .com, .net, etc., do. For example, most commercial domains
in the uk get registered under .co.uk, not directly under .uk (we
call .co.uk and similarly situated domains "effective TLDs")

Some legacy ccTLDs still exist even if the associated country no
longer exist. For example: .su (Soviet Union)

ccTLDs are not subject to ICANN contractual requirements. This
means that they are run as the individual ccTLD operators deem
appropriate. In some cases, this translates to things like no
requirement for publicly available whois service (whois normally
tells you who owns/controls a given domain)

IDNs (Internationalized Domain Names)

Most TLDs use "normal” ("Roman" or "Latin") letters, numbers
and/or hyphens, and can be up to 63 characters long.

IDNs were created to meet the needs of those using languages
with other scripts, such as:

-- Arabic

-- Chinese

-- Cyrillic (Russian)

-- Greek

-- Hangul (Korean)

-- Hebrew

-- Indian (Bangla, Devanagari, Gujarati, Gurmukhi, Tamil, Telugu)
-- Katakana (Japanese), etc.

IDNs get represented two ways: as a "U label" (presentation
format, using the international character set, such as H4g), and
as an "A label" (the ASCIl-encoded form, such as xn--fiqg64b)

Internationalized Domain Names (cont)

This is now a valid domain name: (L& KD . A A%
Plug it into your browser, and you'll be taken to that web site.
[Anyone want to attempt pronunciation of that domain name?]

That same name in Punycode ASCII format gets written:
xn--p8j9a0d9c9a.xn--q9jyb4c

Note: Punycode-format IDNs always begin "xn—"

Need to manually convert between the two? See
http://idna-converter.com/

More resources relating to IDN's:
https://www.icann.org/resources/pages/more-2012-05-08-en

New gTLDs

Recently ICANN has begun the creation of over 1,300 new gTLDs,
such as .xyz, .red, .faith, .london, stream, etc., see 1,188 listed at
http://newgtlds.icann.org/en/program-status/delegated-strings

for the new gTLDs delegated to-date

Some of these new gTLDs are restricted to designated
communities, others are open and new domains can be
registered by anyone (sometimes for as little as $0.49/domain, as
can be seen at https://tld-list.com/ (click on "Cheapest Register"
to sort by domain name cost))

Trademark holders can use the new Trademark Clearinghouse to
protect their marks against possible dilution by registrants in the
new gTLDs, see http://newgtlds.icann.org/en/about/trademark-
clearinghouse.

Question: has your company protected its own marks via the
Trademark Clearinghouse?

We've Been Talking About Names, What About IPs?

* Even though domain names are important, and we like talking
about domain names, computers and computer networks also

need IP addresses.

e Just as there's a lot of jargon around domain names, there's a lot
of jargon around IP addresses, too.

The Critical Role of IP Addresses

 While we often refer to Internet resources according to their
domain names, each server/workstation/laptop/tablet/
smartphone/etc. requires an IP address to connect to the
Internet.

* A host may have a traditional ("IPv4") address, a much longer
"new-fangled" IPv6 address, or both.

« We'll talk about IPv4 addresses a little first.

IPv4 Addresses and Prefixes

* Traditional ("IPv4") IP addresses, consist of four integers
separated by dots (that's why these are also often known as
"dotted quads"). Each of the four values can have a value from
O to 255. For example: 104.244.13.104

* Ranges of IPv4 addresses are expressed in a variety of forms,
most simply by stating a starting and ending address. For
example: 104.244.12.0 - 104.244.15.255

* |Pv4 address ranges can also be expressed as "CIDR prefixes."
CIDR prefixes consist of a starting address and a "mask length" or
"prefix length" indicative of the size of the block (see the table in
a few pages). For example, 104.244.12.0 - 104.244.15.255 can
also be represented in CIDR notation as 104.244.12.0/22

Classless (CIDR) Addressing:
Much More Flexibility...

« Some commonly seen CIDR lengths — note the pattern (each
longer mask has % the number of addresses of the preceding)

[...]
/14

/15
/16
/17
/18
/19
/20
/21
/22

262,144 |Pv4 addresses
131,072 IPv4 addresses
65,536 IPv4 addresses
32,768 IPv4 addresses
16,384 |IPv4 addresses
8,192 IPv4 addresses
4,096 IPv4 addresses
2,048 IPv4 addresses
1,024 1Pv4 addresses

/23
/24
/25
/26
/27
/28
/29
/30
/31
/32

512 IPv4 addresses
256 IPv4 addresses
128 IPv4 addresses
64 IPv4 addresses
32 IPv4 addresses
16 IPv4 addresses
8 IPv4 addresses

4 |Pv4 addresses

2 IPv4 addresses

1 IPv4 address

Whois

Whois tells you "who is" responsible for a given number or name.
You can query whois for domain names, IP addresses, and ASNs.

You can access whois information from the command line.
In a Unix terminal window, you can enter:

S whois farsightsecurity.com

You can also query whois over the web from a variety of 379 party
web gateways, such as https://dnsquery.org/whois/

Some domain whois data may be hidden behind proxy/private
registrations, obfuscating the true owner of the domain name.

Types of IPv4 Addresses

* Globally routable IP addresses: these addresses are usable
worldwide, and will be uniqgue worldwide. These are "regular" or
"normal” IPv4 addresses. We can further subdivide regular IPv4
addresses into:

— Provider independent (PI) globally routable IP addresses: these addresses
can be used with any single provider, or with any combination of providers.

— Provider assigned (PA) globally routable IP addresses: these addresses are
provided for your use by your upstream provider. If you leave that
provider, you "can't take them with you." If you leave, you'll need to
"renumber out of that block" into a new block of address space, returning
your previous block for some other customer to eventually use.

Do NOT attempt to have some third party ISP advertise PA address space
on your behalf (the third party ISP normally won't do it, anyhow).

RFC1918 Addresses for Private Intranets

RFC 1918 address space consists of three IP address ranges:
10.0.0.0-10.255.255.255 (10/8 prefix)
172.16.0.0-172.31.255.255 (172.16/12 prefix)
192.168.0.0-192.168.255.255 (192.168/16 prefix)

You can use these addresses however you like — within your own
site. However, you CANNOT route those addresses to the
Internet as a whole. To understand why, realize that thousands
of sites might have networks using addresses from the address
range 10.0.0.0-10.255.255.255 — how would the Internet know
which one of those was the "right one?"

RFC1918 addresses are perfect, however, for things like
networked printers that should only be used by local people.

Network Address Translation (NAT)

* You may use already be using RFC1918 addresses on your own
home network. A common scenario is that you:
— Receive a publicly routable address from Comcast, Centurylink, etc.

— You then use a wireless access point/"router" to connect all of your
family's devices to the Internet, sharing that one public IP.

— This is done through use of RFC 1918 address space within your home,
with those private addresses automatically "translated" to the single public
IP address you received from your ISP.

* Sounds like magic, right? It sort of is, but, unfortunately, it does

have some downsides:
— It is difficult (although not impossible) to run servers from behind a NAT'd
IP address (most broadband providers ban home servers, anyhow)

— NAT boxes, because they need to rewrite IP addresses, need to be
"protocol aware" — this means that H.323 video conferencing may have
trouble traversing some NAT boxes

— An ISP can't tell which host behind a NAT box might be botted, if bad traffic
is seen getting emitted from a shared IP

Localhost/Loopback Address

e 127.0.0.1is a special IPv4 "loopback" address that refers to the
host itself.

The host can talk to it's own 127.0.0.1 (and other addresses in

127.0.0.0/8), but no one is able to talk to someone else's
127.0.0.0 addresses.

Assigning IPs to Systems: Static vs Dynamic

Servers in a department probably need "static" IP addresses.

These are IPs that have been manually/permanently assigned for
use by that particular computer. They will normally be associated
with a meaningful public hostname, such as finance.example.edu

User laptops, tablets, smart phones, etc. will probably be
automatically given temporary, or "dynamically assigned," IP
addresses from a site's DHCP server. These address "leases"
might last for just a few hours, but can be renewed if needed for
a longer period. DHCP names are seldom very exciting (perhaps
looking like dhcp-250.example.edu or dyn-110-72.something.edu)

Samantha Smith's laptop might use dhcp-250.example.edu this
morning, and dhcp-18.example.edu this afternoon, while Jimmy
Johnson's iPad might use dhcp-250.example.edu this afternoon.

DHCP allows IPs to be easily assigned, and allows a relatively
small pool of addresses to be shared by a large(r) pool of users.

Where Do Sites Request Blocks of IP Addresses?

* Small customers (such as an individual or a new startup business) normally get
small blocks of IP address space from their upstream Internet Service Provider.

e Larger sites (such as an established national or regional ISP that is multi-homed
(connected to two or more upstream providers using BGP)) normally request
provider-independent address space from their regional registry.

Bl AfriNIC
Bl APNIC
Bl ARIN
B LACNIC
RIPE NCC

https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Regional_Internet_
Registries_world_map.svg/2000px-Regional Internet_Registries_world_map.svg.png°

Sadly, The World's Largely Run Out
of Unassigned IPv4 Addresses

* |Pv4 addresses are just 32 bits long. That means that there's only
a maximum of 2732=4,294,967,296 potential addresses

available.

 There's actually not that many potential addresses, and in fact
they've run out fast. See the graph on the following page.

RIR Address Pool(/8s)

IPv4 Address Run Out By Regional Registry

RIR IPv4 Address Run-Down Model

AFRINIC
APNIC
ARIN
RIPE NCC
LACNIC

2018 2019

Date

Source: http://www.potaroo.net/tools/ipv4/

161

Fortunately We Have Lots of IPv6 Addresses

IPv6 addresses are a little different. For example, IPv6 addresses
are written a little differently than IPv4 addresses.

IPv6 addresses are normally written as a series of 32 hexadecimal
letters, broken into colon-separated 4-character chunks.

One such sample IPv6 address: 2620:11¢:f004::104

When writing IPv6 addresses, leading zeros within a chunk can
be omitted (as was done in the "11c" and "104" chunks above).

If there's a run of zeros in an IPv6 address, those can be replaced,
in one location only, with two successive colons.

Verbose form: 2620:011¢:f004:0000:0000:0000:0000:0104

"What's That About Hexadecimal Numbers Again?"

 Decimal (base 10) numbers are written using the digits O - 9.
Hexadecimal numbers (base 16) are written using 0 - 9 PLUS
the letters A (=10), B (=11), C(=12), D (=13), E (=14), F (=15)

* Place Decimal: Hexadecimal:
15t 1070=1's 1670=1's
2nd 1071=10's 1671=16's
3rd 1072=100's 1672=256's
4th 1073=1,000's 1673=4096's

 Convert 5178 (decimal) to hexadecimal:
5178/4096=1 with 1082 left over
1082/256=4 with 58 left over
58/16=3 with 10 left over
10/1=10 (written as "A") =» 143A (hexadecimal)

"So How Many IPv6 Addresses Can | Get?"

The Internet may be just about out of IPv4 addresses, but IPv6
addresses are available in barge-size quantities. Then again,
we use IPv6 addresses a little more liberally, too.

In IPv4 world, a typical subnet was a /24, or 256 addresses.

In the IPv6 world, a normal subnet is an IPv6 /64, or
2°64=18,446,744,073,709,551,616 addresses. That's many more
addresses than all the addresses in the IPv4 Internet, worldwide.

Each IPv6 subnet gets that many addresses even though a typical
subnet might only have a handful (or perhaps a few hundred) of
those addresses in use. This seems horribly weird and wasteful,
but don't worry, IPv6 is intended to be used this way.

Mentally think "an IPv6 /64 represents a host, or maybe a small
number of hosts," and you'll be okay. If you think "an IPv6 /64 is
18,446,744,073,709,551,616 addresses," you'll need therapy.

Normal IPv6 Allocations and IPv6 CIDR Sizes

A single local network normally uses a /64.

A smaller end site needing multiple subnets normally gets an
IPv6 /56. How many IPv6 /64's can that site deploy? (see table)

A provider (such as a small local ISP) might gets an IPv6 /48;
how many small end sites can they give a /56 to? (see table)

If you use up what you've initially received, you can request more
[more about IPv6 allocations: https://tools.ietf.org/html/rfc6177]

Prefix # of IPv6 48's # of IPv6 /56's # of IPv6 /64's

/36 4,096 1,048,576 268,435,456
/40 256 65,536 16,777,216
/44 16 4,096 1,048,576
/48 1 256 65,536

/56 1 256

/64 1

Types of IPve Addresses

There are a wide number of different types of IPv6 addresses, in
part because there were many attempts to map IPv4 addresses
"automagically” over into IPv6 through gateway services.

A summary of those types can be seen at https://www.ripe.net/
participate/member-support/new-lir/ipv6_reference_card.pdf

The most commonly seen types of native IPv6 addresses?

-- Globally routeable unicast addresses

-- Unique Local Addresses, the IPv6 equivalent of RFC1918 IPv4
private address space (all from fc00::/7)

-- Link Local Addresses, most commonly seen when looking at
IPv6-enabled hosts that don't have a globally routeable address
or ULA address (seeing just an fe80 address is often a sign that
you don't actually have IPv6 internet connectivity)

Connecting Names to IPs and IPs to Names

e We've talked a little about names and a little about IPs.

* Now let's come back to talking a little about how DNS connects
the two together.

Resource Record Format

DNS relationships are defined in "resource records."

A sample DNS resource record looks like this:

www.farsightsecurity.com. 3600 IN A 104.244.13.104

The first field is the domain name.

The second field is the TTL, or time to live (which we've already
introduced in our earlier caching discussion).

The third field, the "class code," will almost always be
"IN" ("Internet"), and can normally be ignored.

The fourth field is the DNS record type. In this example, we have
an "A" record (a normal IPv4 name-to-IP address record)

The fifth and final field is RDATA, in this case, an IPv4 address.

DNS Record Types

* As we've previously mentioned, here are many different types of
DNS records:

— A: Normal domain name—>IPv4 address record

— AAAA: Normal domain name —> IPv6 address records

— CNAME: Domain name - different domain name

— NS: Name Server records (tells what name servers to use for a domain)

— MX: Mail eXchanger records (where should | send email for this domain?)
— TXT: Text records, capable of carrying arbitrary text

— SOA: Start Of Authority records, defines the TTL and other zone
parameters

— SRV: Server pointer records, explaining where to find a service (IP address
and port information)

— And there are others, but only a comparative handful get widely used.

Record Types Seen In A Day's Worth of DNS Data

Observations % of Obs Record Type & Code

16,964,386 57.27% | A (1)
9,460,957 31.94% | SOA (6)
1,745,213 5.80% | CNAME (5)

714,677 2.41% | NS (2)
259,468 0.88% | PTR (12)
204,785 0.69% | MX (15)
149,771 051% | TXT (16)
100,424 0.34% | AAAA (28)
18,140 0.06% | NULL (10
2,393 0.01% | SRV (33)
440 <0.01% | SPF (99)
77 <0.01% | WKS (11)
59 <0.01% | <UNKNOWN>(1169)

<0.01% | DNAME (39)

<0.01% | LOC (29)

<0.01% | HINFO (13)

<0.01% | <UNKNOWN>(4652)
<0.01% | <UNKNOWN>(4097)
<0.01% | RP (17)

29,620,807 100.00%

el Ll el K A Y |

171

A Less Commonly Talked-About Record Type: SOA

* $ dig farsightsecurity.com SOA +short
fsi.io. hostmaster.fsi.io. 2016101202 7200 3600
604800 3600

Decoded...
* Primary master server for the zone? That's at the FQDN fsi.io
* Contact address? hostmaster@fsi.io (sub an @ sign for the first .)
* Serial Number/date gets updated whenever the zone is changed

* Refresh: secondary servers are told to wait this long between
checks to see if primary has updated (7200 seconds in this case)

* Retry: secondary can't talk to primary? try again in 3600 seconds

* Expire: secondary can't talk to primary? treat cached zone data as
being still valid for a week (604800 seconds)

* Negative caching time: if you get an NXDOMAIN for names in this
domain, remember that negative response for 3600 seconds

* See also dig's +multiline option for SOA records

Wildcard DNS

Normally DNS servers only send out answers for specific FQDNs.

However, some name servers will get configured to support
wildcarding, in which case the name server will answer for ANY

pattern matching the wildcard

For example, assume you're a marketer, and you've uniquely

tagged a hidden tracking URL in each message you send. E.G.,
xfasd-ttsuoa.campaign7.example.com
hruak-adhdwr.campaign7.example.com

[etc]

You want your name server to respond to each such address
when resolved. Using DNS wildcarding, you could tell a name
server to return a response for *.campaign7.example.com

Zone Transfers

If you wanted to get a copy of all the records in a zone, such as all
the hosts defined under uoregon.edu, you'd do a "zone transfer."
Zone transfers can be full (AXFR) or incremental (IXFR).

Because a full listing of all hosts in a domain would be hugely
useful if you were a hacker/cracker planning an attack, normally
zone transfers are only allowed for a small set of explicitly
authorized parties who have a legitimate need for such access.
(Sometimes zone files transfers are accidentally/unintentionally
allowed as a result of operator error/configuration problems, see
the next slide)

By the way, you now also understand why providers of passive
DNS normally like to carefully vet their users — having access to
passive DNS is like being able to get copies of a site's zone file.

Example of a Zone Transfer Leaking: .kp

| @ GitHub, Inc. (US) | https://github.com/mandatoryprogrammer/NorthKoreaDNSLeak c C@ Search ':J

North Korea .kp TLD Zone Data

On Sept 19, 2016 at approximately 10:00PM (PDT), one of North Korea's top level nameservers was accidentally
configured to allow global DNS zone transfers. This allows anyone who performs an AXFR (zone transfer) request to
the country's ns2.kptc.kp nameserver to get a copy of the nation's top level DNS data. This was detected by the
TLDR Project - an effort to attempt zone transfers against all top level domain (TLD) nameservers every three hours
and keep a running Github repo with the resulting data. This data gives us a better picture of North Korea's domains
and top level DNS.

Click here for the commit showing this incident.

Update: North Korea has now patched this issue, however this project will continue to scan the Internet for future
slip-ups just like this one.

175

DNS Response Codes

When a DNS query is made, it may succeed or it may fail. The
status code that's returned is called as a "DNS response code."

S dig google.com

[o..]
;7 —>>HEADER<<- opcode: QUERY, status: NOERROR [etc]
google.com. 180 IN A 216.58.193.110

NOERROR == normal successful completion status code

S dig asasdjasjnasfjnasfnkafs.com

[...]
; 3 —>>HEADER<<- opcode: QUERY, status: NXDOMAIN [etc]

NXDOMAIN == domain does not exist

There are other (relatively obscure) additional error codes, too

176

Thanks For the Chance to Talk Today!

Are There Any Questions?

Please remember to fill out your
session evaluation!

THANK YOU for Participating In
M3AAWG's Paris Training Program

