
Nowhere	To	Hide:	Using	Passive	DNS		
To	Find	Spammer	Infrastructure	

M3AAWG	Paris,	France	
12:30-14:30,	October	24th,	2016	

Forum	ABC	Room,	Level	0	
	

Joe	St	Sauver,	Ph.D.	(stsauver@fsi.io)	
M3AAWG	Sr.	Technical	Advisor	
ScienOst,	Farsight	Security,	Inc.	

	
hSps://www.stsauver.com/joe/nowheretohide/	

–	Social	Media	PosAng	Allowed	–	
TwiSer,	Facebook,	LinkedIn,	other	social	media	posts		

are	permiCed	during	this	session,	PROVIDED	THAT	YOU...	

	

• DO	NOT	post	the	private	link	provided	for	aCendees	to	use	to	obtain	a	free	
account	for	training	purposes	
• Only	post	comments	made	by	the	speaker	
•  Do	not	post	comments	or	quesOons	from	the	audience	(but	you	can	share	the	
speaker’s	responses	to	quesOons)	
•  Do	not	post	the	name,	posiOon	or	company	of	other	meeOng	aSendees	
•  Do	not	post	conversaOons	with	aSendees	
• M3AAWG	is	not	a	deliverability	conference;	we	are		

•  An	industry	working	group	meeOng	
•  An	anO-abuse	conference,	or		
•  A	gathering	of	security	experts	

•  All	of	the	M3AAWG	Membership,	Trademarks	and	Logo	guidelines	apply		
hSps://www.m3aawg.org/members/how-promote-
m3aawg#TrademarkGuidelines	

Welcome	To	The	Paris	Passive	DNS	Training!	
•  Let	me	begin	by	thanking	Anna,	Chris	&	Udeme	for	the	invitaOon	

to	do	passive	DNS	training	for	you	here	in	Paris.	
•  	I	also	want	to	thank	all	of	you	for	making	the	Ome	to	sit	in	on	

today's	session	–	I	know	that	you're	in	"La	Ville	Lumière"	with	lots	
of	tempOng	sites	to	see	and	wonderful	bars/restaurants	to	enjoy,	
so	I'll	do	my	best	to	make	sure	your	training	Ome	is	well	spent.	

•  We're	going	to	begin	by	talking	about	passive	DNS,	and	then,	
ager	that,	if	we	sOll	have	Ome	and	there's	interest,	we'll	go	back	
and	provide	some	opOonal	backfill	about	"regular	DNS"		
(normally	I'd	reverse	those	secOons,	but	I	suspect	that	many	of	
you	already	have	a	working	fluency	about	DNS)	

•  There	will	be	a	sign-in	sheet	going	around	if	you	need	a	
cerAficate	of	aCendance	for	your	files	back	home.	

•  Please	also	take	the	Ome	to	fill	out	a	session	evaluaAon.	
3	

A	Disclaimer	About	The	IPs	and	Domains	Used	Today	

•  To	illustrate	the	tools	and	techniques	we'll	be	talking	about	
today,	I'll	be	showing	examples	that	involve	various	IP	addresses,	
netblocks,	ASNs,	and	domains.	Unless	stated	to	the	contrary,		
I	do	NOT	mean	to	imply	that	these	are	bad	(or	good!)	IPs,	
domains,	etc.	(I'll	oSen	use	colleges)	These	are	JUST	EXAMPLES.	

•  You,	however,	when	pracOcing	with	passive	DNS,	may	want	to	
try	invesOgaOng	domains	that	you	believe	to	be	suspicious.		
Some	of	those	sites	may	even	be	involved	with	malware.		

•  Please	do	NOT	invesAgate	any	sites	that	may	be	involved	with	
malware	while	here	at	M3AAWG	(we	don't	want	anyone	gejng	
infected,	or	spreading	an	infecOon	to	others).	If	you	do	choose		
to	invesOgate	such	sites	elsewhere,	you	do	so	at	your	own	risk.	

4	

My	Odd	Slide	Style	
•  Let	me	also	get	one	other	thing	"out	of	the	way"	up	front:	as	

you've	seen	by	now,	I	produce	detailed	slides.	Some	people	
don't	get	why	I	use	this	style,	so	I	now	rouOnely	try	to	explain	this	

•  I've	tried	the	more-typical	3-4	bullets/slide	(with	~15	slides	for	an	
hour	long	talk),	but	I	find	myself	gejng	sidetracked,	rambling/
running	over,	or	I	end	up	missing/skipping	stuff.		

•  I	also	deal	with	complex	issues,	and	I	HATE	to	be	misquoted.	
•  My	slide	style	prevents	a	lot	of	those	problems,	and	means	that	

you	don't	need	to	try	to	take	notes.	
•  That	said,	I'm	not	going	to	read	my	slides	word-for-word	for	

you.	You	don't	need	to	try	to	do	so,	either,	although	they	are	a	
sort	of	"closed	capOoning"	if	you're	deaf	or	hard-of-hearing.	

•  I	also	write	detailed	slides	to	help	people	looking	at	them	aSer	
the	fact,	and	to	facilitate	indexing	by	web	search	engines.	

5	

Today's	Session	
•  I've	prepared	some	material	I'm	planning	to	go	over,	but	I	

encourage	you	to	ask	quesAons	as	we	go	along,	should	
quesAons	arise	–	I've	explicitly	leg	some	Ome	for	you	to	do	so.	

•  I	will	also	suggest	some	exercises	you	can	try.	The	exercises	are	
opOonal	--	you	can	do	them	or	skip	them	as	you	may	like,	but	I	
think	people	learn	more	effecOvely	when	they	actually	try	stuff.	

•  Farsight	is	providing	all	aCendees	at	today's	session	with	
complimentary	temporary	access	to	DNSDB	for	use	as	part	of	
this	training.	If	you	don't	want	to	use	DNSDB,	you're	welcome	to	
use	another	passive	DNS	system	you	may	have	access	to,	
instead.	

•  There	are	unavoidable	differences	between	various	passive	DNS	
implementaOons	and	we	can't	document	everything,	but	the	
techniques	and	approaches	I'll	show	should	broadly	generalize.	
We	want	you	to	learn	skills	that	will	help	you	in	your	work.	

6	

Some	EnAAes	Offering	Passive	DNS	Services	
•  Farsight	Security,	Inc.'s	DNSDB	(see	hSps://dnsdb.info/)	

–  DNSDB	is	a	commercial	product,	but	individual	law	enforcement	officers	
(LEOs),	veSed	academic	researchers,	and	veSed-but-unfunded	"Internet	
superheroes"	can	request	free	(grant)	access	from	Farsight.	

•  Some	other	passive	DNS	implementaOons	include:	
–  Florian	Weimer's	BFK,	hSp://www.br.de/br_dnslogger.html	
–  CERT.at/Aconet	Passive	DNS	(inquire:	kaplan@cert.at	or	lendl@cert.at)	
–  CIRCL	Passive	DNS,	hSp://www.circl.lu/services/passive-dns/	
–  hSp://passivedns.mnemonic.no/search/	
–  hSps://www.opendns.com/enterprise-security/resources/data-sheets/

invesOgate/	
–  hSps://www.cs.auckland.ac.nz/research/groups/sde/dhdb-index.php	
–  VirusTotal,	hSps://www.virustotal.com/#search	
–  360.cn	Passive	DNS,	hSps://www.passivedns.cn/help/	

•  If	I	missed	any	other	passive	DNS	sites,	please	drop	me	a	note...	
7	

	
	
	
	

This	slide	intenOonally	omiSed	–	it	contained	
details	about	how	in	person	aSendees	could	get	a	

DNSDB	account	for	use	during	the	training	

8	

PART	I.	BASIC	PASSIVE	DNS	VIA	YOUR	WEB	
BROWSER	
	
	
1)	IntroducAon	

What's	DNS?	(A	Quick	One	Slide	Intro)	
•  DNS	is	one	of	the	Internet's	core	protocols.	DNS	maps	domain	

names	(such	as	www.cnn.com)	to	numeric	IP	addresses	(such	as	
151.101.20.73),	and	vice	versa.		

•  We	use	the	Domain	Name	System	all	the	Ome	without	even	
thinking	about	it,	in	part	because	DNS	seems	to	"just	magically	
work,"	and	symbolic	domain	names	are	much	easier	to	remember	
than	all-numeric	IP	addresses.	
	

•  Domain	names	can	also	be	very	convenient	for	server	admins.	
For	example,	if	a	server	administrator	needs	to	move	her	web	
server	to	a	new	provider,	she	can	do	so	without	having	to	
manually	tell	each	user	her	site's	new	IP	address.	She	can	just	
change	the	DNS	for	her	site,	and	then	her	users	will	automaOcally	
go	to	the	right	place	when	they	next	try	to	visit.	

10	

Spammers	and	Other	Cyber	Criminals	ALSO	Use	DNS	
•  DNS	is	convenient	for	everyone,	good	guys	and	bad	guys	alike.	
•  A	typical	spammer	might	have	many	web	sites,	perhaps	different	

ones	for	each	different	affiliate	sender,	or	different	ones	for	each	
spamverOsed	item.	DNS	make	it	easy	for	the	spammer	to	manage	
those	sites,	and	to	share	their	limited	pool	of	IP	addresses.	

•  If	a	cyber	criminal	has	a	"bit	of	a	set	back,"	and	ends	up	kicked	off	
a	hosOng	provider	they've	been	using,	they	can	just	update	their	
DNS	when	they	find	a	new	rock	to	hide	under.	Clearly,	that's	a	
convenience	for	the	bad	guy.	

•  However,	DNS	can	also	work	AGAINST	cyber	criminals...	

	 	 	Key	idea:	If	we	can	discover	one	iniAal	bad	guy	site,	we		
	 	may	be	able	to	use	passive	DNS	to	"PIVOT"	and	find	related	
								sites	also	being	used	by	that	bad	guy,	or	OTHER	bad	guys.	
		 11	

PivoAng:	
	
Using	"IniOal		
Clues"	To	Find	
"Related	
Resources"	
	
Key....................	
	
--	Passive	DNS	
				Based	
	
--	NOT	Passive			
				DNS-Based	
				pivot	a1ributes	

IP	Address(es)	

Name	Servers	

ASN	

Name	Server	

Domain	Name	

IP	Address(es)	
Domain	Name(s)	

Whois	

Whois	

Domain	Name(s)	

ASN	

What's	The	Point	of	PivoAng	via	Passive	DNS?	
•  By	exploring	shared	"evil"	IPs	(or	CIDR	netblocks)	

–  We	can	idenOfy	compromised	machines	that	may	need	remediaOon,	
–  It	avoids	leaving	the	miscreant	with	a	foundaOon	from	which	to	recover		
–  You	maximize	your	chances	of	successfully	chasing	financial	payment	

details	and	other	business	records		
–  You	may	even	discover	addiOonal	unknown	criminal	"lines	of	business"	

•  IdenAfying	related	bad	domains	
–  Cyber	criminals	tend	to	be	using	more	and	more	domain	names,	so	

there's	no	choice	but	to	scale	up	right	along	with	them.	
–  More	domains	seized	=	more	"news	worthy"	law	enforcement	acOons,	

and	more	incenOve	for	the	good	guys	to	spend	their	limited	cycles	on	this	
case,	not	some	other	alternaOve	ones	

–  You	wouldn't	want	to	end	up	with	an	incomplete	takedown/seizure	(you	
know,	potenOally	spawning	online	remarks	such	as	"Hah	hah	hah,	they	
seized	a	dozen	of	my	domains,	but	they	missed	two	thousand	other		
ones	I	also	have,	so	I	didn't	even	really	noOce	it")	

13	

One	Small	Problem:	Regular	DNS	Isn't	Designed	To	
Facilitate	HunAng	Spammers/Cybercriminals	

•  HunOng	down	bad	guys	was	never	a	DNS	design	goal.	
•  It	shouldn't	be	surprising,	therefore,	that	normally	we	can't...	
–  Find	all	the	fully	qualified	domain	names	under	a	base	domain	
–  Find	all	the	domains	that	use	a	specific	name	server		
–  Given	the	IP	used	by	one	fully	qualified	domain	name,	find	all	
other	domain	names	that	are	also	on	that	same	IP	address	

–  Given	a	net	block,	find	all	the	domains	in	that	network	range	
–  Given	a	domain	name,	see	if	it	has	resolved	to	mulOple	
different	IPs	over	Ome,	and	if	so,	what	were	those	IPs?	

•  These	queries	are	all	examples	of	the	sort	of	things	that	"regular	
DNS"	was	just	NOT	set	up	to	do...	

•  Fortunately,	passive	DNS	*can*	handle	those	sort	of	queries.	
•  By	using	passive	DNS,	we	can	make	it	harder	for	bad	guys	to	hide	

14	

Where	Does	Passive	DNS	Data	Come	From?	

•  At	least	in	Farsight's	
case,	our	passive	DNS		
data	is	collected	by		
passively	monitoring		
DNS	cache	miss	traffic		
above	large	recursive		
resolvers	–	actual	
DNS	queries	and	
responses.	

•  That	primary	data	is	
also	augmented	with	
informaOon	from	
zone	file	access	programs,	
as	may	be	available.	

15	

An	Aside	About	Passive	DNS	and	Privacy	
•  Farsight	Security	and	I	both	care	a	great	deal	about	user	privacy,		

and	we	hope	that	you	do,	too.	
•  At	the	same	Ome,	we	want	and	need	to	ensure	that	spammers	

and	cyber	criminals	can	be	held	accountable.	Law	breakers	must	
not	be	free	to	perpetrate	their	online	crimes	with	impunity.	

•  Passive	DNS,	collected	properly,	comes	from	above	large	shared	
recursive	resolvers.	Queries	appear	to	originate	from	the	
recursive	resolver,	not	from	any	individual	user.	As	a	result,	no	
personally	idenOfiable	informaOon	gets	collected	or	stored.	

•  Because	of	this	architecture,	passive	DNS	does	NOT	raise	the	sort	
of	pervasive	monitoring	concerns	that	are	associated	with	things	
like	bulk	metadata	collecOon	and	tradiOonal	traffic	analyOc	
methods,	as	discussed	in	"The	Enduring	Challenges	of	Traffic	
Analysis,"	hSps://www.stsauver.com/joe/dublin-traffic-analysis/	

16	

2)	The	Simple	Web	Interface	to	DNSDB	

Accessing	DNSDB	

•  DNSDB	can	be	accessed	mulOple	different	ways,	including:	
1)  Via	a	simple	web	interface.	We'll	talk	about	that	first.	
2)  Via	a	versaOle	RESTful	API	(see	hSps://en.wikipedia.org/wiki/

RepresentaOonal_state_transfer	if	you're	curious	about	REST)	
•  Ogen	the	API	is	accessed	via	a	Unix	command-line	interface	tool.		

We'll	show	you	the	Python	DNSDB	API	client	in	the	next	secOon.	
•  You	can	also	access	it	via	a	Splunk	plugin,	convenient	if	you	"live	in	Splunk"	
•  From	your	own	C	language	(or	other	programming	language)	applicaOons,	

programmaOcally.	We'll	even	show	you	skeleton	libcurl	code	for	doing	that	

•  There	are	some	other	mechanisms	that	you	can	use	to	access	
DNSDB,	too,	but	we'll	forego	talking	about	them	today.	

•  Let's	begin	with	the	simple	web	interface.	
18	

LimitaAons/Advantages	of	the	Web	Interface	

LimitaAons:	
•  The	web	interface	is	primarily	meant	for	casual/occasional	

usage,	and	as	such,	is	intenOonally	kept	simple.	
•  The	web	interface	returns	at	most	10,000	results	(aSempOng	

to	render	larger	tables	of	results	can	make	some	web	
browsers	sluggish)	

•  The	web	interface	currently	lacks	the	ability	to	do	Ome	
fencing	or	sorOng	of	query	results.	It	also	doesn't	offer		
special	output	formats	(such	as	JSON-format	output).	

Advantages:	
•  The	web	interface	is	simple	to	use	
•  The	web	interface	works	on	preSy	much	any	system	with	a	

browser,	with	no	sogware	installaOon	required	
19	

Prerequisites	For	Using	The	DNSDB	Web	Interface	

•  In	order	to	be	able	to	use	the	web	interface,	you'll	need	a	DNSDB	
username	and	password.	If	you	requested	one	via	the	link	
provided	earlier,	that	informaOon	should	be	waiOng	for	you	in	
your	inbox.		

•  The	web	interface	to	DNSDB	is	at	hCps://www.dnsdb.info/	
	
You	should	be	able	to	access	that	web	site	from	Firefox,	Chrome,	
Safari	or	any	other	popular	web	browser	–	just	type	that	address	
into	your	web	browser's	address	bar	and	hit	return.		

•  Please	try	logging	on	to	your	test	account	now.	

20	

The	DNSDB	Web	Client's	Opening	Screen	

21	

Click	"Login"	on	the	Blue	Menu	Bar,	Then	Login...	

22	

This	Is	The	Opening	Search	Screen	You	Should	Then	See	

23	

Make	a	Simple	Sample	Query...		
What	IPv4	Addresses	Have	Been	Used	By	ieee.org?	

24	

Results	For	That	Query	

25	

Some	Tips	For	Working	With	The	Web	Interface	

•  If	you	make	mulOple	queries,	results	from	later	queries	will	get	
added	to	the	boCom	of	the	output	screen.	Scroll	down	to	see	
them.	[Very	helpful	to	know	if	you	think	"nothing's	happening"	:-)]	

•  To	retain	results	from	the	web	interface,	copy	and	paste	the	
results	into	a	text	file	and	save	that	file.	

•  If	there	are	query	results	you	no	longer	need,	remove	them	from	
your	output	window	by	clicking	the	red	X	icon	

•  If	there	are	query	results	you'd	like	to	just	temporarily	hide,	hit	the	
green	arrow	icon.	To	restore	those	results,	hit	that	green	arrow	
icon	again.	

26	

Making	Correct	Choices	In	The	Web	Interface	

•  The	parameters	you	set	in	the	web	interface	control	what	gets		
searched	for	and	found	in	DNSDB.	

•  The	web	form	will	change	somewhat	as	you	ask	DNSDB	to	do	
different	sorts	of	searches.	

•  If	you	pay	aSenOon	to	what	DNSDB	wants	(e.g.,	"domain	name"	
vs.	"IP	address	or	network")	you	shouldn't	have	too	much	trouble.	

•  If	you	do	make	a	mistake,	no	big	deal,	just	take	a	closer	look	and	
try	it	again...	

27	

Sample	Mistake:	Mistakenly	Pujng	In		
An	IP	Where	A	Domain	Name	Is	Needed...	

28	

Trying	It	Again,	ASer	CorrecAng	The	Query	Sejngs	

29	

Avoiding	DNSDB	Errors	In	The	First	Place	

•  The	sejngs	you	pick	in	the	web	interface	control	what	gets	
searched	in	the	DNSDB	data.	Records	in	the	DNSDB	database	are	
conceptually	similar	to	regular	DNS	records:	
					RRSET	NAME 											RECORD	TYPE 	 														RDATA	
									ieee.org.			 	 	 	 	A							 	 	 							140.98.193.141	
	"LEFT	HAND	SIDE" 	 	 	 	 	 									"RIGHT	HAND	SIDE"	

	

•  A	RRset	(Resource	Record	Set)	name	search	looks	for	the	specified	
domain	name	on	the	leS	hand	side	and	returns	any	associated	IPs	

•  If	you	wanted	to	see	all	known	hosts	(or	"fully	qualified	domain	
names")	that	live	"under"	a	domain,	you'd	do	an	rrset	search	for	
*.domain	

•  To	see	the	hosts	that	have	been	seen	using	an	IP	address,	do	an	rdata	
("right	hand	side")	search	for	that	IP	

•  Want	the	domains	using	a	nameserver?	Do	an	Rdata	name	search	30	

RRset	searches:	find	leS	hand	side	matches	

31	

Rdata	searches:	find	right	hand	side	matches	

32	

A	Brief	DNS	Record-Type	"Cheat	Sheet"	
•  If	you	don't	choose	a	DNS	record	type,	you'll	see	ALL	record	types	

by	default.	If	you're	not	sure,	just	leave	the	record	type	set	to	ALL,	
and	see	what	looks	relevant	to	your	needs	(learn	by	playing	with	
the	tool).	

•  Too	many	results?	Pick	a	record	type	to	reduce	unwanted	"noise:"	

–  "A"	è	name	to	IPv4	address	records	("regular	DNS	records")	
–  "AAAA"	è	name	to	IPv6	address	records	
–  "CNAME"	è	aliases	for	other	names	
–  "NS"	è	name	server	records	
–  "TXT"	è	text	records	(ogen	used	for	creaOve	purposes)	
–  "MX"	è	mail	exchanger	records	
–  "SOA"	è	Start	Of	Authority	records	
–  "PTR"	è	pointer	(or	"inverse	address")	records	
–  "SRV"	è	(relaOvely	uncommon)	server	records	
–  "RRSIG"	è	one	(of	several	types)	of	DNSSEC	records	

33	

What	About	the	"Bailiwick"	Field	In	The	Interface?	

•  Just	ignore	the	bailiwick	field	for	now...	everything	should	work	
fine	if	you	just	leave	it	blank.	

•  If	you're	an	enthusiast	(or	just	overcome	with	curiosity):	

–  If	you	find	you're	gejng	too	many	results,	or	puzzling	results,	you	can	set	
the	bailiwick	to	be	equal	to	the	base	domain	that	you're	querying.	This	may	
reduce	the	number	of	records	you're	shown.	
	
For	example,	if	you're	doing	an	rdata	search	for	www.example.com,	you	
could	try	sejng	the	bailiwick	to	be	equal	to	example.com	
	

–  If	you'd	like	to	read	more	about	bailiwicks,	see	secOon	2.4	of	
hSps://archive.farsightsecurity.com/Passive_DNS/passive-dns-
architecture.pdf	
	

34	

"How	Do	I	Get	More	Than	10,000	Results?"	

•  You	can't	in	the	simple	web	interface.	If	we	were	to	allow	you	to	
try,	it	would	make	at	least	some	web	browsers	go	completely	
catatonic	as	the	browser	struggled	to	render	such	a	huge	table.		

•  That	said,	even	10,000	results	is	far	more	than	many	web-based	
passive	DNS	implementaOons	allow.		

•  If	you	need	more	than	10,000	results,	try	the	command-line	API	
client,	which	we'll	be	talking	about	in	the	next	secOon.	It	will	let	
you	retrieve	up	to	a	million	results	(1,000,000)	per	query.	

35	

Exercises	

These	exercises	are	opAonal,	but	why	not	give	them	a	try,	eh?	
	
a)	Using	DNSDB,	look	up	your	company's	main	web	site	(this	is	an	
RRset	query,	Record	type=A,	Domain	name=www.example.com	(or	
whatever)).	Find	the	most	recent	IP	address	it	has	used.	
	

b)	Now	click	on	that	IP.	Are	there	any	other	hosts	sharing	that	IP	
address?	(you	may	need	to	scroll	down	to	see!)	
	

c)	Let's	now	try	doing	a	search	for	your	company's	nameservers.	
Close	the	previous	results	(click	the	liSle	red	X	stop	signs	above	the	
results).	Go	back	to	the	search	box.	Do	an	RRset	query,	Record	
type="NS",	Domain	name=example.com	(or	whatever).	Do	NOT	
include	the	www	as	part	of	the	domain	name	you	provide...	
	

Look	for	one	of	the	most	recent	name	servers	used	by	the	domain	
and	make	a	note	of	it.	Now	go	on	to	exercise	d)	on	the	next	slide.	

36	

Exercises	(conAnued	#1)	

d)	Let's	see	what	other	domains	also	use	that	name	server.		
Do	an	Rdata	(not	RRset)	search.	Set	the	record	type=	NS.		
Record	data=	the	name	of	the	name	server	you	found	in	part	c).	
Input	mode=	Name.	
How	MANY	domains	appear	to	be	using	that	name	server?	
	

e)	What	hosts	are	known	to	be	part	of	the	europa.eu	domain?	
RRset	search.	
Record	type=	ANY	
Record	data=	*.europa.eu			(note	the	leading	asterisk	followed	by	a	
dot	and	then	the	domain	name)	
Bailiwick	(opOonal)=	europa.eu	
	

f)	What	hosts	are	in	147.67.0.0/17	?	(Rdata	search,	record	type=A,	
Record	data=147.67.0.0/17	,	Input	mode="IP	or	network").	
Do	you	see	www.clubenglishhp.com?	Does	it	look	out	of	place?	
When	was	that	host	last	seen	by	DNSDB?	(how	can	you	find	out?)	37	

Exercises	(conAnued	#2)	

g)	Different	passive	DNS	systems	may	have	slightly	different	
interfaces,	but	you	should	be	able	to	"cross	walk"	what	you've	
learned	without	too	much	effort.		
	
For	instance,	try	some	of	the	preceding	exercises	on	
	

	hSp://www.br.de/br_dnslogger_en.html	
	
Try	searching	for	europa.eu	(see	the	next	screen)	
	
Note	that	some	queries	may	NOT	be	available	from	some	passive	
DNS	implementaOons.		
	
There	may	also	be	differences	in	the	number	(or	format)	of	the	
results	returned.	
	 38	

europa.eu	from	BFK	Passive	DNS	

39	

End	of	Part	I	

•  Assuming	you	successfully	completed	the	exercises	on	the	
preceding	few	slides,	congratulaAons,	you're	now	able	to	do	basic	
passive	DNS	tasks!		

•  If	you're	NOT	a	technical	person	and	you're	itching	to	hit	a	
museum	or	see	the	Eiffel	tower,	you	can	"escape"	now,	and	
maybe	try	doing	some	further	queries	with	your	temporary	
access	later	tonight	or	in	a	few	days.	You	should	have	access		
for	about	15	days.	
	

•  On	the	other	hand,	we'd	encourage	you	to	stay	here	and	keep	
going!	We've	got	more	to	share	with	you!	

40	

PART	II.	PASSIVE	DNS	API/Command	Line	
Interface	
		
3)	Installing	the	Command	Line	Interface	(CLI)	
Python	Client	

LimitaAons	And	Advantages	of	Using	The	DNSDB	API	

LimitaAons:	
•  The	API	Command	Line	Client	works	best	if	you're	

comfortable	working	at	the	Unix	shell	prompt	
•  You	will	need	to	install	soSware	(but	just	once!)	to	use	the	

API	Command	Line	Client	from	the	command	line	

Advantages:	
•  The	API	interface	is	easy	to	script	if	you're	comfortable	using	

Unix	pipes	and	redirecOon	
•  The	API	can	be	asked	to	return	up	to	1,000,000	results/query	
•  The	API	can	do	Ome	fencing	and	sorOng	of	query	results	
•  The	API	offers	JSON	output	format,	in	addiOon	to	tradiOonal	

plain	text	output	
42	

Prerequisites	For	Accessing	DNSDB	Via	The	API	

•  You'll	need	your	DNSDB	API	key.	You	were	sent	one	along	with	
your	DNSDB	username	and	password,	so	check	your	email!	

•  If	at	all	possible,	access	the	API	from	a	Linux,	BSD	or	Mac	OS	
system.	

•  If	you	MUST	run	under	Windows:		

•  You	can	try	running	the	DNSDB	command	line	client	in	a	Unix	virtual	
machine	on	top	of	Windows		

•  Virtualbox	is	one	free	virtual	machine	environment	you	can	try	for	this	
purpose.	This	is	a	relaOvely	large	download,	so	you	may	not	want	to	
download	it	right	now,	but	direcOons	are	available	in	the	MS	Word	
document	"installing-virtualbox-m3aawg.docx"	in	the	
hSps://www.stsauver.com/joe/nowheretohide/		directory	

43	

Python	DNSDB	API	Command	Line	Client	

•  There	are	actually	mulOple	DNSDB	command	line	clients	available.		
	

•  For	this	training,	we're	going	to	use	the	Python	DNSDB	client	
known	as	"dnsdb_query.py"		

•  To	get	that	sogware	(and	instrucOons	for	its	installaOon),	see	
hSps://github.com/dnsdb/dnsdb-query	

•  You	will	need	to	be	comfortable	installing	sogware,	or	get	help	
from	someone	who	is,	to	install	dnsdb_query.py	

•  If	you're	not	comfortable	installing	that	sogware,	you	can	also	just	
watch	while	we	go	through	this	secOon.	

44	

Prerequisites		
(per	hCps://github.com/dnsdb/dnsdb-query)	

•  				Linux,	BSD,	OS	X	
•  				Curl 	 	 	 	 	 	 	[see	h9ps://curl.haxx.se/]	
•  				Python	2.7.x 	 	 	 	 	[see	h9ps://www.python.org/]	
•  				Farsight	DNSDB	API	key 	 	[see	your	email,	if	you	signed	up	

	 	 	 	 	 	 	 	 	for	a	free	DNSDB	training	account]	

•  Curl	and	python	2.7.x	ogen	come	pre-installed	on	many	Unix-ish	
systems,	so	we	will	not	address	installing	them	further	here.	If	you	
do	need	to	install	them,	they	will	usually	be	available	from	your	
operaOng	system's	package	management	system.	

45	

Installing	dnsdb_query.py	per	
hCps://github.com/dnsdb/dnsdb-query	

	
You	will	only	need	to	do	this	ONCE:	
	
1)	Create	a	directory	
	
 mkdir ~/dnsdb

	
2)	Download	the	soGware:	
	

	curl https://codeload.github.com/dnsdb/dnsdb-query/
tar.gz/debian/0.2-1 -o ~/dnsdb/0.2-1.tar.gz

	
(conOnues	on	next	slide)	

46	

Installing	dnsdb_query.py	(conAnued)	

3)	Extract	the	soGware	
	

	tar xzvf ~/dnsdb/0.2-1.tar.gz -C ~/dnsdb/
 --strip-components=1

	
4)	Create	an	API	key	file	[note	the	dot	before	dnsdb-query.conf!]	
	

	nano ~/.dnsdb-query.conf
	
5)	Cut	and	paste	the	following,	subsTtuTng	your	API	Key	where	
shown	[there	should	be	quotes	shown	around	the	API	key	in	the	file!]	
	

	APIKEY="putYourAPIkeyhere"
47	

Installing	dnsdb_query.py	(conAnued	#2)	

6)	Test	the	soGware:	
	

	python dnsdb/dnsdb_query.py -i 104.244.13.104

 ...
 www.farsightsecurity.com. IN A 104.244.13.104

7)	Recommended:	Copy	dnsdb_query.py	to	a	directory	in	your	path	
	
If	dnsdb_query.py	is	copied	to	a	directory	that's	in	your	Unix	
system's	default	path	and	is	executable,	you	will	then	simply	be	able	
to	say:	
	

	dnsdb_query.py -i 104.244.13.104
48	

Debugging	Errors	Trying	To	Run	dnsdb_query.py	

•  If	your	API	key	is	wrong,	you	may	see:	
	
$	dnsdb_query.py	-r	yahoo.com	
HTTP	Error	403:	forbidden	

	
•  Seeing	a	silent	"error"	with	no	error	message/feedback?	

	
$	dnsdb_query.py	-r	stsauver.com	
$	
	
Do	you	have	a	.dnsdb-query.conf	file	in	your	home	directory?	
(note	the	leading	dot!)		Does	it	contains	an	APIKEY	line,	with	your	
actual	key	where	it	says	YourLongAlphaNumericAPIKeyHere		?	
	
APIKEY="YourLongAlphaNumericAPIKeyHere"	

49	

Learning	A	LiCle	About	The	Command	Line	Client	

•  Some	(comparaOvely	terse)	informaOon	about	the	DNSDB	API	is	
available	online	at	hSps://api.dnsdb.info/	
	

•  You	can	also	read	the	command	line	synopsis...	

50	

$	dnsdb_query.py	--help 	 	 	 		
Usage:	dnsdb_query.py	[opOons]	
	

OpOons:	
		-h,	--help												 	 	 	 	 	 	show	this	help	message	and	exit	
		-c	CONFIG,	--config=CONFIG 	 	 	config	file	
		-r	RRSET,	--rrset=RRSET	
																								rrset	<ONAME>[/<RRTYPE>[/BAILIWICK]]	
		-n	RDATA_NAME,	--rdataname=RDATA_NAME	
																								rdata	name	<NAME>[/<RRTYPE>]	
		-i	RDATA_IP,	--rdataip=RDATA_IP	
																								rdata	ip	<IPADDRESS|IPRANGE|IPNETWORK>	
		-s	SORT,	--sort=SORT		 	 	 	 	sort	key	
		-R,	--reverse									 	 	 	 	 	reverse	sort	
		-j,	--json												 	 	 	 	 	 	output	in	JSON	format	
		-l	LIMIT,	--limit=LIMIT	 	 	 	 	limit	number	of	results	
		--before=BEFORE							 	 	 	 	only	output	results	seen	before	this	Ome	
		--ager=AFTER									 	 	 	 	 	only	output	results	seen	ager	this	Ome	
	

Time	formats	are:	"%Y-%m-%d",	"%Y-%m-%d	%H:%M:%S",	"%d"	(UNIX	Omestamp),	
"-%d"	(RelaOve	Ome	in	seconds),	BIND	format	(e.g.	1w1h,	(w)eek,	(d)ay,	
(h)our,	(m)inute,	(s)econd)	 51	

Learning	By	Examples	and	Mucking	Around	A	LiCle	

•  The	best	way	to	learn	to	use	passive	DNS	in	API	mode	is	
probably	by	seeing	some	examples,	and	then	playing	with	the	
tools	a	bit	yourself.	

•  The	DNSDB	API	basically	has	three	modes	in	which	it	can	be	used:	
	

-i	
-r	
-n	

•  Let's	start	with	-i,	our	only	opOon	if	we're	searching	for	an	IP	
address	or	a	CIDR	netblock.	

52	

4)	InvesAgaAng	An	IP	Address	or	CIDR	Block	

-i	

If	Your	StarAng	Point	Is	An	IP	Address	

You'll	want	to	make	a	"dash	i"	query	(that's	the	ONLY	opAon	that's	
available	for	searching	IP	addresses,	network	ranges,	etc.).	
	
You	may	find	IPs	of	interest	in	your	mail	server	logs,	firewall	logs,	
email	message	headers,	etc.	

$ dnsdb_query.py -i 199.48.133.170
3sea.ru. IN A 199.48.133.170

mail.3sea.ru. IN A 199.48.133.170

mail.it-solver.ru. IN A 199.48.133.170

[etc]

	

54	

Why	Would	You	Want	To	Search	For	An		
IP	Address	In	Passive	DNS?	

•  Some	reasons	include...	

•  You	have	an	IP	address,	and	you	want	to	know	what	domains		
have	been	seen	on	that	IP	address.	Is	there	anything	unexpected?		
Do	the	domain	names	found	look	suspicious?	(l33t	speak,	names	
that	appear	confusingly	similar	to	popular	phishing	targets,		
names	that	menOon	prohibited	acOviOes	such	as	carding,	etc.)	

•  UlOmately,	you'll	typically	want	to	"pivot"	from	that	IP	address	to	
related	domain	names	(start	with	a	clue	(that's	an	IP	address)	and	
follow	that	lead	to	the	domain	names	that	use	that	IP)	

•  Searching	passive	DNS	by	IP	address	is	a	fundamental	skill....	
55	

Time	Fencing:	Show	Results	From	Just	the	Last	90	Days	

OperaOonal	security	analysts	ogen	don't	care	about	historical	
results.	They're	intensely	focused	on	what's	happening	NOW,	or	
what's	just	happened	in	the	immediate	past.	
	
If	that's	true	for	you,	maybe	limit	what	you	get	shown	to	the	last	
thirty	or	ninety	days...	
	
$ dnsdb_query.py -i 199.48.133.170 --after=90d

56	

A	Few	Other	Ways	To	Specify	Times....	
$ dnsdb_query.py -i 199.48.133.170 --after=2015-08-22
$ dnsdb_query.py -i 128.223.0.0/16 --before=2016-01-01
--after=2015-01-01
$ dnsdb_query.py -i 199.48.133.170 --after="2015-08-22
14:36:10"
$ dnsdb_query.py -i 199.48.133.170 --before=2013-01-22											
$ dnsdb_query.py -i 128.223.0.0/16 --after="-3600"
	
	

You	Can	Even	Use	Raw	Unix	epoch	seconds...	
$ dnsdb_query.py -i 199.48.133.170 --after=1467074500

Basics	of	working	with	Unix	epoch	second	dates	(on	a	Mac)...	
$ date +%s																								!	if	you	want	the	current	Tme	in	seconds	
1477022891
$ date -j -f "%b %d %Y %T" "Aug 28 1991 00:00:00" "+%s"
683362800
$ date -r 683362800
Wed Aug 28 00:00:00 PDT 1991 57	

What	If	You	Want	To	See	What's	In	A	CIDR	Netblock?	

SomeOmes	you	want	to	see	what's	in	an	enOre	net	block,	not	just	
what's	related	to	a	single	IP	address:	
	
$ dnsdb_query.py -i 199.48.128.0/21 > temp.txt
$ wc -l temp.txt

 10000 temp.txt 	ç	max	of	10,000	results	by	default	
	
If	you	need	more	results,	increase	the	max	results	limit...	
$ dnsdb_query.py -l 1000000 -i 199.48.128.0/21 >
temp.txt
$ wc -l temp.txt
 22205 temp.txt

$ more temp.txt
rootbsd.daleco.biz. IN A 199.48.129.182
[etc] 58	

What	If	I'm	Interested	in	IPv6	Addresses	or	Blocks?	

$ dnsdb_query.py -i 2607:f010:2e8:228:0:ff:fe00:152
gateway.lb.it.ucla.edu. IN AAAA
2607:f010:2e8:228:0:ff:fe00:152
gateway-v6.lb.it.ucla.edu. IN AAAA
2607:f010:2e8:228:0:ff:fe00:152

$ dnsdb_query.py -i 2607:F010::/32 > temp.txt
$ wc -l temp.txt
932 temp.txt
$ more temp.txt
ip-list.emileaben.com. IN AAAA 2607:f010::1
secure.math.ucla.edu. IN AAAA 2607:f010:2a8:8fe4::44
secure.math.ucla.edu. IN AAAA 2607:f010:2a8:8fe4::45
webmail.math.ucla.edu. IN AAAA 2607:f010:2a8:8fe4::211
webmail2.math.ucla.edu. IN AAAA 2607:f010:2a8:8fe4::211
[etc]

59	

How	About	An	Arbitrary	Network	IP	Range?	

$ dnsdb_query.py -i 199.48.128.33-199.48.128.43
ns1.whittingtonpark.org. IN A 199.48.128.42
ns2.whittingtonpark.org. IN A 199.48.128.42
ns1.musicman.com. IN A 199.48.128.34
[etc]
	
But	that	output	is	unsorted!	What	if	we	want	it	sorted	by	IP?	
	
$ dnsdb_query.py -i 199.48.128.33-199.48.128.43 --sort
rdata
ns1.musicman.com. IN A 199.48.128.34
drjohngreenphotos.com. IN A 199.48.128.34
persianenglishtranslations.com. IN A 199.48.128.34
ilcr.x.rootbsd.net. IN A 199.48.128.34
[etc]

60	

Some	-i	SorAng	Notes	

"valid	sort	keys	are	count,	rdata,	rrname,	rrtype,	zone_Qme_first,	
zone_Qme_last"	
	
To	reverse	the	sort	order,	specify	-R	(or	--reverse).	No	ability	to	sort	
by	mulOple	keys	(e.g.,	you	can't	sort	by	IP	and	then	rrname	within	IP)	
	
But	try:	
$ dnsdb_query.py -i 199.48.128.33-199.48.128.43 | grep
-v ";;" | awk '{print $3 " " $1 " " $2}' | sort -u | awk
'{print $2 " " $3 " " $1}'

drjohngreenphotos.com. A 199.48.128.34
ilcr.x.rootbsd.net. A 199.48.128.34
ns1.musicman.com. A 199.48.128.34
persianenglishtranslations.com. A 199.48.128.34
[etc]

61	

Some	Of	The	Sort-Related	Jargon...	

count=number	of	Omes	DNSDB	has	seen	this	unique	RRset	
	
rdata=right	hand	side	of	the	record	(e.g.,	the	IP	info	for	"A"	records)	
For	"ucla.edu.	IN	A	128.97.27.37",	the	rdata	is	127.97.27.37	
	
rrname=leg	hand	side	of	the	record	(e.g.,	the	domain	name	for	"A"	
records).	For	"ucla.edu.	IN	A	128.97.27.37",	the	rrname	is	ucla.edu	
	
rrtype=is	this	an	"A"	record?	a	"AAAA"?	an	"NS"	record?	a	"CNAME?"	
an	"MX"	record?	an	"SOA"?	For	"ucla.edu.	IN	A	128.97.27.37"	the	
rrtype	is	"A"	
	
zone_Ame_first,	zone_Ame_last=for	data	gleaned	from	ICANN	zone	
files,	when	was	the	first	Ome	the	record	was	seen?	when	was	the	last	
Ome	it	was	seen?	

62	

5)	Searching	Domain	Names	Seen	On		
The	LEFT	Side	("rrnames")	

-r	

If	You've	Got	A	Domain	Name	and	Want	To	Know		
The	IPs	It	Has	Used,	Think	"I'll	make	a	-r	query"	

$ dnsdb_query.py -r farsightsecurity.com/A --sort
time_last
;; bailiwick: farsightsecurity.com.
;; count: 628
;; first seen: 2013-07-17 22:08:50 -0000
;; last seen: 2013-09-25 15:47:47 -0000
farsightsecurity.com. IN A 149.20.4.207

;; bailiwick: farsightsecurity.com.
;; count: 6,350
;; first seen: 2013-09-25 15:37:03 -0000
;; last seen: 2015-04-01 06:17:25 -0000
farsightsecurity.com. IN A 66.160.140.81
[etc]

["valid sort keys are bailiwick, count, rdata, rrname,
rrtype, time_first, time_last"]

64	

SelecAng	Just	A	Specific	DNS	Record	Type	
•  On	the	preceding	slide,	we	specified:	

$ dnsdb_query.py -r farsightsecurity.com/A --sort
time_last

					That	returned	only	"A"	(name	to	IPv4	address)	records.	Other		
					opOons:	
	
•  AAAA	è	name	to	IPv6	address	records	
•  CNAME	è	aliases	for	other	names	
•  NS	è	name	server	records	
•  TXT	è	txt	records	
•  SOA	è	start	of	authority	records	
•  MX	è	mail	exchanger	records	
•  PTR	è	pointer	(or	"inverse	address"	records)	
•  SRV	è	server	records	
•  RRSIG	è	one	of	several	types	of	DNSSEC	records	

65	

Find	All	*.farsightsecurity.com	Hostnames	With	
"AAAA"	Records,	Seen	Since	1-May-2016?	

$ dnsdb_query.py -r *.farsightsecurity.com/AAAA --
after=2016-05-01 --sort=count --reverse ! Note use
of a backslash to avoid shell expansion of the asterisk	

;; bailiwick: farsightsecurity.com.
;; count: 17,106
;; first seen: 2015-04-01 13:05:08 -0000
;; last seen: 2016-06-27 14:15:53 -0000
dl.farsightsecurity.com. IN AAAA 2620:11c:f004::105

;; bailiwick: farsightsecurity.com.
;; count: 7,903
;; first seen: 2015-04-09 13:31:11 -0000
;; last seen: 2016-06-27 09:16:20 -0000
www.farsightsecurity.com. IN AAAA 2620:11c:f004::104
[etc]

66	

Show	Me	All	Domains	Containing	*paypal*	...	

You	CAN'T	search	for	*paypal*	(at	least	not	via	the	DNSDB	API;	you	
CAN	do	this	via	direct	access	to	raw	DNSDB	files	via	DNSDB	Export).		
	
You	CAN	do	a	leg	hand	wildcard	OR	a	right	hand	wildcard,	but	not	
both	at	the	same	Ome.	You	also	can't	do	an	embedded	("middle")	
wildcard	search	(foo*info)	
	
WORKS:	
$	dnsdb_query.py	-r	_dkim._domainkey.*/TXT	>	temp.txt	
[shows	DKIM	TXT	records]	
[right	hand	queries	can	be	potenOally	Ome	consuming	to	run!]	
	
WORKS:	
$	dnsdb_query.py	-r	*.va	>	temp2.txt	
[this	command	shows	all	domains	in	the	VaOcan's	ccTLD]	
[do	not	try	this	for	larger	domains,	remember:	<=1,000,000	results!]	67	

More	-r	"Wildcarding"	Notes	

•  Wilcarding	happens	for	an	enOre	dot-delimited	label,	not	just	part	of	dot-
delimited	labels.	If	we're	interested	in	stuff	related	to	"stsauver"....	

	
$ dnsdb_query.py -r *tsauver.com
HTTP Error 404: Not Found
$ dnsdb_query.py -r stsauve*
HTTP Error 404: Not Found

vs....	
$ dnsdb_query.py -r *.stsauver.com > temp.txt
$ wc -l temp.txt
 118 temp.txt

	
•  Wildcards	CAN	match	one	OR	MORE	enOre	labels	(e.g.,	a	wildcard	will	find	

subdomains	(mulOple	labels)	rather	than	just	matching	within	a	single	label):	
	
$ dnsdb_query.py -r *.uoregon.edu/A | grep
www\.cs\.uoregon.edu | uniq
www.cs.uoregon.edu. IN A 128.223.4.25

68	

IDNs?	Yes	--	In	Punycode	Format	

•  $ dnsdb_query.py -r www.bbc.* does	NOT	find	www.bbc.在线	
(display-format	simplified	Chinese	InternaOonalized	Domain	Name	TLD	
meaning	"online")	

•  Convert	the	display	format	label	www.bbc.在线	to	punycode	via		
the	converter	that's	at	hSp://mct.verisign-grs.com/	,	then	try:	
	
$ dnsdb_query.py -r www.bbc.xn--3ds443g	
	
the	punycode'd	version	of	that	domain	also	isn't	found...	

•  We	do	have	SOME	punycode'd	domains	for	that	TLD,	however:	
	
$ dnsdb_query.py -r *.xn--3ds443g | wc -l
 62277

•  FWIW,	a	list	of	all	IDNs	(actually,	all	top	level	domains)	can	be	found	at		
hSps://en.wikipedia.org/wiki/List_of_Internet_top-level_domains	

69	

6)	Match	Domain	Names	Seen	On	The	RIGHT	
Side	("rdata"),	Typically	Used	To	Find		
Domains	Sharing	The	Same	Name	Server	
Or	Domains	Sharing	a	Common	Mail	Server	

-n	

If	You've	Got	a	Name	Server's	FQDN,	Think	-n	

$ dnsdb_query.py -n phloem.uoregon.edu/NS > temp.txt
$ wc -l temp.txt
 1575 temp.txt
$ more temp.txt
uoregon.biz. IN NS phloem.uoregon.edu.
maoz.com. IN NS phloem.uoregon.edu.
bogus.com. IN NS phloem.uoregon.edu.
jhome.com. IN NS phloem.uoregon.edu.
o-gig.com. IN NS phloem.uoregon.edu.
otsys.com. IN NS phloem.uoregon.edu.
flyeug.com. IN NS phloem.uoregon.edu.
[etc]
	
What	will	-n	return	besides	NS	records?	You	may	see	SOA's,	PTR's,	
CNAME's,	MX's	– IF	you	don't	limit	the	records	returned	to	just	/NS's	

71	

List	Just	EffecAve	2nd-Level	Domains	From	a	NS	
Search	(Also	Omijng	Any	.arpa.	Domains)	

$ dnsdb_query.py -n phloem.uoregon.edu/NS | awk '{print
$1}' | 2nd-level-dom | grep -v "\.arpa\." | sort -u >
temp.txt

$ more temp.txt
1-4-5.net.
3bcomm.gq.
55tours.tj.
aboutlanegov.com.
ac.ci.
ac.mz.
agd.gov.jm.
aha-intl.org.
ahastudyabroad.com.
[etc]

72	

The	LiCle	2nd-level-dom	Script	
#!/usr/bin/perl
use strict;

use warnings;

use IO::Socket::SSL::PublicSuffix;

my $pslfile = 'your_path_here/effective_tld_names.dat';

my $ps = IO::Socket::SSL::PublicSuffix->from_file($pslfile);

my $line;

foreach $line (<>) {

 chomp($line);
 my $root_domain = $ps->public_suffix($line,1);

 printf("%s.\n", $root_domain);

}

	
The	required	data	file?	See	hSps://publicsuffix.org/list/	

73	

TesAng	the	2nd-Level	Domain	Script....	
$ echo "www.bbc.co.uk" | 2nd-level-dom
bbc.co.uk

$ echo "www.cs.uoregon.edu" | 2nd-level-dom
uoregon.edu

$ echo "www.springfield.k12.or.us" | 2nd-level-dom
springfield.k12.or.us

WHY	would	you	want	to	do	this	sort	of	domain	name	reducOon?	
Imagine	a	large	file	with	thousands	of	wildcarded	domains...	you	
may	not	care	about	the	random	leading	gibberish,	you	just	want	the	
base	(effecOve	2nd-level)	domains...	

74	

Why	Do	You	Call	Them	EffecQve	2nd	Level	Domains?	
For	"normal"	top	level	domains,	such	as	dot	com,	new	domains	are	
registered	immediately	under	the	top	level	domain.	For	instance,		
example.com	is	a	typical	hypotheOcal	2nd	level	domain.	
	
Other	pseudo	TLDs,	such	as	dot	co	dot	uk,	may	actually	see	many	domains	
registered	as	what	look	like	"third"	level	domains	(e.g.,	because	.co.uk	
"uses	up"	the	first	and	second	level	domains).	Because	of	the	effecOve	2nd	
level	domain	concept,	"co.uk"	gets	treated	as	a	single	"chunk,"	as	if	it	were	
its	own	TLD.	
	
Some	domains	may	even	have	longer	effecOve	TLDs,	such	as	k12.or.us,	
leading	to	effecOve	2nd	level	domains	such	as	springfield.k12.or.us	
(the	three	domains,	k12.or.us,	gets	treated	as	a	single	"chunk")	
	
See	the	list	at	hSps://publicsuffix.org/list/public_suffix_list.dat	

75	

Another	Example:	
Finding	Domains	That	Share	a	Common	Mail	Server	
$ dnsdb_query.py -n mx.berkeley.edu/MX > temp.txt

$ wc -l temp.txt
 292 temp.txt

$ more temp.txt
athletics.calbears.com. IN MX 5 mx.berkeley.edu.
engineeringpathway.com. IN MX 10 mx.berkeley.edu.
engineeringpathway.com. IN MX 15 mx.berkeley.edu.
berkeley.edu. IN MX 10 mx.berkeley.edu.
berkeley.edu. IN MX 15 mx.berkeley.edu.
ce.berkeley.edu. IN MX 10 mx.berkeley.edu.
ce.berkeley.edu. IN MX 15 mx.berkeley.edu.
cs.berkeley.edu. IN MX 5 mx.berkeley.edu.
[etc]

76	

7)	Formajng	CLI	Query	Output	

Choice	of	Output	Formats	for	dnsdb_query.py		

•  The	default	output	format	for	dnsdb_query.py	is	plain	text	
	
•  However,	at	your	opOon,	you	can	also	request	JSON	output:	
	

$	dnsdb_query.py	-r	stsauver.com/A	-j	
{"count":	3617,	"Ome_first":	1407639108,	"rrtype":	"A",		
"rrname":	"stsauver.com.",	"bailiwick":	"stsauver.com.",		
"rdata":	["199.48.133.170"],	"Ome_last":	1467065919}	
{"count":	5,	"Ome_first":	1321883198,	"rrtype":	"A",	"rrname":	
"stsauver.com.",	"bailiwick":	"stsauver.com.",	"rdata":	
["209.151.96.70"],	"Ome_last":	1385778016}	
	

•  JSON	output	can	be	"preCy	printed"	using	jq	
See	hSps://github.com/stedolan/jq	for	informaOon	on	jq	
Tips	on	using	hSps://stedolan.github.io/jq/	

78	

Sample	jq-formaCed	Output	From	dnsdb_query.py	

$	dnsdb_query.py	-r	stsauver.com/A	-j	|	jq	'.'	
{	
		"count":	3617,	
		"Ome_first":	1407639108,	
		"rrtype":	"A",	
		"rrname":	"stsauver.com.",	
		"bailiwick":	"stsauver.com.",	
		"rdata":	[
				"199.48.133.170"	
],	
		"Ome_last":	1467065919	
}	
[etc]	

79	

Outpujng	Just	One	Selected	Field	With	jq	

$ dnsdb_query.py -r farsightsecurity.com/A -j |
jq .rdata | tr -d '[]" ' | grep -v "^$"
66.160.140.81
104.244.13.104
149.20.4.207

Translating...

-- jq .rdata
 Select the rdata values from JSON output

-- tr -d '[]" '
 Delete any square brackets, double quotes or spaces

-- grep -v "^$"
 Delete any blank lines

80	

Reversing	Domains	For	Ease	of	SorAng	

$	dnsdb_query.py	-l	1000000	-i	104.140.106.223	|	awk	'{print	$1}'	|	
2nd-level-dom	|	reverse-domain-names	|	sort	-u	>	temp.txt	
$	wc	-l	temp.txt	
			704	temp.txt	
$	more	temp.txt	
date.15cmw	
date.4a7pb	
date.bhj6k	
date.d19rq	
date.d4ors	
date.fqgd0	
date.g69vs	
date.gctgn	
[etc]	

81	

The	LiCle	reverse-domain-names	Script	
#!/usr/bin/perl

my @lines = <>;

chomp @lines;

@lines =

 map { join ".", reverse split /\./ }
 sort

 @lines;

print "$_\n" for @lines;

82	

8)	Querying	DNSDB	At	Scale:	
Querying	For	The	Domains	In	All	Prefixes	
Announced	by	an	Autonomous	System	
	
	
Gentle	reminder:	You've	only	got	a	modest	100	queries/day	
quota,	so	be	careful	you	don't	exhaust	ALL	your	queries	with	
just	one	or	two	runs	of	this	sort.	Each	Ome	you	do	a	
dbsdb_query.py	command,	that	"counts"	against	your	
limited	quota,	and	some	ASNs	may	have	scores	or	even	
hundreds	of	prefixes!	

What	If	We	Want	To	Look	At	All	Prefixes	For	An	ASN?	

Assume	we	want	to	look	at	the	domains	found	in	passive	DNS	for	"all	
prefixes	associated	with	the	ASN	that's	rouOng	104.140.106.223"	
	
Begin	by	mapping	the	IP	to	ASN	(see	the	script	on	the	next	page):	
	
$ ip2asn 104.140.106.223
62904 104.140.106.223
	
Now	go	to	Hurricane	Electric's	BGP	data	site	and	check	it	for	AS62904	
to	find	the	full	list	of	associated	prefixes...	
	
hSp://bgp.he.net/AS62904#_prefixes	
hSp://bgp.he.net/AS62904#_prefixes6	
	
We'll	just	do	the	IPv4	ones	for	now	(feel	free	to	do	the	IPv6	ones	as	
an	exercise)	 84	

The	ip2asn	Script	(As	Used	On	The	Previous	Page)	

#!/bin/sh

origip=`echo $1`
revip=`echo $1 | sed 's/\([0-9]*\)\.\([0-9]*\)
\.\([0-9]*\)\.\([0-9]*\)/\4.\3.\2.\1/'`
listing=`host -w -t txt $
{revip}.asn.routeviews.org 2>/dev/null | tail
-1 `
listing2=`echo ${listing} | awk '{print $4}' |
sed 's/"//g'`
echo "${listing2} ${origip}"

85	

Processing	the	HE	BGP	Data	To	Build	The	Queries...	

Copy	the	prefixes	from	hSp://bgp.he.net/AS62904#_prefixes	
and	paste	them	into	the	temporary	file	called	temp.txt	
	
Massage	temp.txt,	keeping	just	the	first	column...	
$ awk '{print $1}' < temp.txt | sort -u > temp2.txt

Reformat	the	resulTng	file	with	vi	(or	your	favorite	editor)	
$ vi temp2.txt
[manually dd (e.g., delete) any lines other than CIDR
prefixes, then add on....]
:1,$s/^/dnsdb_query.py -l 1000000 -i /
:1,$s/$/ >> temp3.txt ; sleep 2/
:1
[x out (delete) one of the > signs on the first line]
:wq

This	should	leave	you	with	a	file	that	looks	like	the	following...	

86	

dnsdb_query.py	-l	1000000	-i	104.140.104.0/22	>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.140.140.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.140.184.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.140.216.0/24	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.140.223.0/24	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.140.252.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.140.68.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.140.80.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.193.40.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.206.104.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.206.116.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.206.144.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.206.156.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.206.172.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.206.176.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	104.206.178.0/23	>>	temp3.txt	;	sleep	2	
[...]	
dnsdb_query.py	-l	1000000	-i	50.3.240.0/22	>>	temp3.txt	;	sleep	2	
dnsdb_query.py	-l	1000000	-i	75.75.227.0/24	>>	temp3.txt		 87	

Now	Process	Those	Queries...	

$	Ame	sh	-x	temp2.txt	
real 	7m50.108s	 	 	 	ç	less	than	8	minutes	wall	clock	Ome	
user 	1m45.125s	
sys	 	0m13.536s	
$	wc	-l	temp3.txt	
	2990981	temp3.txt 	 	 	ç	nearly	3	million	total	results	
$	more	temp3.txt	
ns1.finalhost.biz.	IN	A	104.140.104.100	
ns1.beSerhosOng.biz.	IN	A	104.140.104.100	
ns2.finalhost.biz.	IN	A	104.140.104.101	
ns2.beSerhosOng.biz.	IN	A	104.140.104.101	
ns1.jindalbullion.biz.	IN	A	104.140.106.228	
ns2.jindalbullion.biz.	IN	A	104.140.106.228	
ns1.servicioscloudperu.com.	IN	A	104.140.104.20	
[etc]	

88	

Simplify	The	Results,	Output-ing	The	Largest	Results	

$	Ame	awk	'{print	$1}'	<	temp3.txt	|	2nd-level-dom	|	sort	|	uniq	-c	
|	sort	-nr	>	temp4.txt	
real 	1m46.661s	
user 	1m50.297s	
sys	0m1.216s	
$	wc	-l	temp4.txt	
	84031	temp4.txt	
$	more	temp4.txt	
277476	seguards.su.	
86621	bai.su.	
78603	xstats.su.	
75081	westats.cc.	
72534	sxo.su.	
57789	sge.su.	
[etc]	

89	

9)	Administrivia	and	Debugging	

Out	of	Queries?	

Most	DNSDB	accounts	have	a	limited	quota	of	queries	(unless	you	
have	a	DNSDB	account	that's	been	configured	to	have	an	unlimited	
number	of	queries).	You	can	check	to	see	how	many	queries	you've	
got	leg	with	code	such	as:	
	
$	curl	--header	"X-API-Key:	PutYourLongNumericAPIKeyHere"	\	
hCps://api.dnsdb.info/lookup/rate_limit		
	
{	
		"rate":	{	
				"reset":	"n/a",		
				"limit":	"unlimited",		
				"remaining":	"n/a"	
		}	
}	

91	

Some	dnsdb_query.py	Errors	

•  $ dnsdb_query.py foo.com
Usage: dnsdb_query.py [options]
[followed	by	the	full	command	line	syntax	summary]	
	
You	forgot	to	specify	-i,	-r,	or	-n	or	otherwise	mis-entered	
something	–	the	dnsdb_query.py	client	can't	figure	out	what	
you're	trying	to	do	

•  $ dnsdb_query.py -i stsauver.com
HTTP Error 400: Bad Request

In	this	example,	you	supplied	a	domain	name	as	a	-i	parameter.	
The	-i	parameter	needs	an	IP	address,	address	range,	or	CIDR	
prefix,	not	a	domain	name.	

	

92	

dnsdb_query.py	Errors	(conAnued)	

•  $ dnsdb_query.py -r 128.223.32.35
HTTP Error 404: Not Found

You	supplied	an	IP	address	to	a	-r	parameter,	which	searches	the	
leg	hand	side.	There	are	no	IP	addresses	on	the	leS	hand	side,	
and	cannot	be.		A	-r	parameter	needs	to	be	given	a	domain	name	
	
"Q.	But	Joe!	What	about	in-addrs?	They're	on	the	leg	side,	right?"		
	
A.	Yet,	but	in-addr's	are	actually	names,	not	a	purely	numeric	IP	
address...	

93	

Searching	For	An	in-addr.arpa	

$ dnsdb_query.py -r 35.32.223.128.in-addr.arpa
;; bailiwick: 223.128.in-addr.arpa.

;; count: 180,166
;; first seen: 2010-06-24 14:40:38 -0000

;; last seen: 2016-06-28 01:18:28 -0000

35.32.223.128.in-addr.arpa. IN PTR phloem.uoregon.edu.

	
Contrast	that	result	with	with:	
$ dnsdb_query.py -i 128.223.32.35
phloem.uoregon.edu. IN A 128.223.32.35

c.ns.usac.edu.gt. IN A 128.223.32.35

[etc]	
	
Note:	some	pDNS	imputed	IP	RRs	may	not	be	trustworthy,	and	in-
addrs	are	definitely	able	to	be	used	in	misleading	ways.	

94	

10)	Farsight's	Splunk	Plugin	and	Passive	DNS	

How	Does	Splunk	"Fit?"	
•  Splunk	is	a	very	popular	log	management	tool,	terrific	for	digging	

into	syslog	data	and	similar	data	sources.	MulOple	versions	of	
Splunk	are	available,	including	a	free	version,	and	trial	versions	of	
the	Enterprise	and	Cloud	versions.		

•  The	Farsight	Splunk	plugin	requires	use	of	the	Enterprise	version	
of	Splunk.	To	get	a	free	60	day	trial	of	Splunk	Enterprise	
(registraOon	required;	limited	to	indexing	500MB	of	data	per	day):	
	
hSps://www.splunk.com/en_us/products/splunk-enterprise.html	
	
You	can	even	install	and	run	the	trial	version	of	Enterprise	Splunk	
and	the	Farsight	DNSDB	plugin	on	your	Mac!	

•  The	installaOon	is	preSy	straigh�orward.	 96	

InstallaAon	Is	Straigh~orward	on	the	Mac	

97	

InstallaAon	(2)	

98	

Once	You've	Got	Splunk	Installed,		
Launch	It	From	Your	Desktop	

99	

The	Farsight	Security	Splunk	Plugin	
•  To	get	the	plugin,	see:	

	
hSps://www.farsightsecurity.com/FarsightDNSDBforSplunk/	
	
hSps://splunkbase.splunk.com/app/3050/	
	
hCps://www.farsightsecurity.com/splunk/	
				FarsightSplunkAppUserGuide.pdf				"	must-have	guide!	

•  Note	that	you	will	need	a	Farsight	API	key	to	use	the	DNSDB	plugin	
for	Splunk.	Your	regular	DNSDB	API	key	will	work	fine	for	this	
purpose.	

100	

What	You	See	ASer	You	Download	the	Splunk	Plugin	

101	

Confirming	The	Integrity	Of	That	Download	On	A	Mac	

102	

It's	always	good	to	confirm	the	integrity	of	your	
downloads,	including	the	Farsight	Splunk	plugin:	
	
$	/sbin/md5		farsight-dnsdb-for-splunk_101.tgz	
MD5	(farsight-dnsdb-for-splunk_101.tgz)	=		
													188a52f070d1168d1feb05d9372fc83e	
	
The	quoted	checksum	matches	the	highlighted	value	on	
the	welcome	message	shown	on	the	preceding	screen,	
so	you're	good	to	install	as	described	on	the	preceding		
screen.	

The	Splunk	DNSDB	Ad	Hoc	Query	Interface	In	AcAon	

103	

Using	The	DNSDB	Splunk	Connector	More	Aggressively	
•  While	you	can	use	the	Farsight	plugin	for	Splunk	as	just	another	

web	interface	for	making	manual	ad	hoc	DNSDB	queries,	the	
Splunk	plugin	really	shines	as	an	automated	way	to	enhance	
large	databases	you	import	into	Splunk.	

•  Note:	enhancing	large	datasets	can	generate	a	large	number	of	
DNSDB	queries.	Because	your	training	query	quota	is	very	
modest,	we	are	NOT	going	to	show	you	how	to	use	Splunk	this	
way	today.	

104	

11)	Making	ProgrammaAc		
Passive	DNS	Queries	With	libcurl	

libcurl	

•  To	make	RESTful	TLS-protected	queries	against	the	DNSDB	API	
from	your	own	code,	you'll	want	a	library	to	handle	the	TLS	"heavy	
lisOng"	work.	

•  I	chose	libcurl,	the	API	version	of	the	command	line	web	client	we	
all	know	and	love.	See	hSps://curl.haxx.se/libcurl/	
	

•  InstallaOon	instrucOons	are	available	at	
hSps://curl.haxx.se/docs/install.html	
	

•  DocumentaOon	is	available	at	hSps://curl.haxx.se/libcurl/	

•  If	you	want	to	check	out	other	alternaOves,	take	a	look	at		
hSps://curl.haxx.se/libcurl/compeOtors.html	

106	

A	Few	Quick	libcurl	Notes	
•  Libcurl	is	under	acAve	development.		

	
The	version	I	installed	and	used	for	the	following	sample	was:	
	
	 	$	curl-config --version
 libcurl 7.50.3 [released	on	Sept	14,	2016]	
	

•  Release	history?	See	hSps://curl.haxx.se/docs/releases.html	
	

•  Lots	of	work	on-going,	see	hSps://curl.haxx.se/changes.html	
	
Always	use	a	current	version	of	libcurl	
	
Be	sure	that	your	copy	of	openssl	is	fully	up-to-date,	too	

107	

Skeleton	libcurl	DNSDB	Query	C	Language	Code		
$ cat sample.c

#include <stdlib.h>
#include <string.h>

#include <curl/curl.h>

int main (void)

{
CURL *curl;

CURLcode res;

char mydomain[1024], tempstring[1024],
fullcommand[1024];

/* initialize curl. call this once and only once. */
curl_global_init(CURL_GLOBAL_ALL);

108	

Sample	libcurl	code	(2)		
while (scanf("%s",mydomain) == 1)

 {

 /* build the command we want to pass to curl */
 /* all our commands use the same basic RESTFUL API

endpoint... */
 strcpy(fullcommand,"https://api.dnsdb.info/lookup/rrset/

name/");

 /* now tack on the domain */
 strcpy(tempstring,mydomain);
 strcat(fullcommand,tempstring);

 /* just give me a token dozen results */
 strcpy(tempstring,"?limit=12");
 strcat(fullcommand,tempstring);

 /* get curl ready for action */
 curl = curl_easy_init();

109	

Sample	libcurl	code	(3)		
 /* pass the API key */
 struct curl_slist *chunk = NULL;

 chunk = curl_slist_append(chunk, "X-API-Key:
YourActualAPIKeyHere");

 res = curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);

 /* do the actual curl command */
 curl_easy_setopt(curl, CURLOPT_URL, fullcommand);
 res = curl_easy_perform(curl);

 if(res != CURLE_OK) { return(EXIT_FAILURE); }

 curl_easy_cleanup(curl);
 }

curl_global_cleanup();

return (EXIT_SUCCESS);
}

110	

Sample	Run	
$ cat test-domains.txt
www.stsauver.com
[etc]

$ gcc -Wall -O3 -o sample sample.c -I/usr/local/include
-L/usr/local/lib/ -lcurl

$./sample < test-domains.txt > output.txt

$ less output.txt
;; bailiwick: stsauver.com.

;; count: 1

;; first seen: 2011-04-30 04:19:39 -0000

;; last seen: 2011-04-30 04:19:39 -0000
www.stsauver.com. IN A 209.151.96.70

[etc]
111	

Notes	About	That	Sample	API	InvocaAon	

•  That's	just	a	proof	of	concept/illustraOon,	it	is	NOT	meant	as	
producOon	grade	code	(it	would	need	to	be	a	lot	more	paranoid	
about	the	way	it	handles	some	things,	including	doing	extensive	
data	saniOzaOon	and	error	checking).	You've	been	warned!		

•  You	can	(and	should!)	do	beSer,	ager	gejng	the	sample	code	to	
actually	run,	assuming	you're	a	programmer	interested	in	doing	
so.	

112	

Exercises	
a)	Get	the	dnsdb_query.py	client	installed	and	running.	Successfully	
make	a	couple	of	test	queries,	perhaps:	

	$ dnsdb_query.py -r m3aawg.org/A --after=30d
 $ dnsdb_query.py -i 67.192.153.75 --after=30d

	

b)	What	2nd-level	domains	share	the	same	netblock	as	m3aawg.org?	
(note:	this	requires	you	to	install	the	liSle	2nd-level-dom	script):	

	$ dnsdb_query.py -i 67.192.153.64-67.192.153.95
 --after=30d | awk '{print $1}' | 2nd-level-dom |
 sort -u > temp.txt

c)	Find	some	IPs	from	messages	in	your	spam	folder.	Try	using	the	
passive	DNS	API	to	invesOgate	them.	If	you	have	no	spam	message	of	
your	own	to	"mine",	perhaps	see:	
	
-- https://www.spamhaus.org/sbl/latest/
-- http://www.senderbase.org/static/spam/#tab=2

113	

This	Ends	Part	II	

•  This	is	another	opportunity	for	you	to	"escape,"	whether	because	
your	head	is	full,	or	because	you	don't	need	a	review	of	DNS.	

•  Again,	however,	we'd	encourage	you	to	consider	staying	for	the	
rest	of	what	we'll	cover	if	you	can.	

114	

PART	III.	DNS	Backfill	
	
1)	IntroducAon	

Referring	to	Computers	on	the	Internet	
•  Internet	users	refer	to	Internet	sites	by	their	domain	names.		

A	domain	name	that	refers	to	a	specific	site	is	normally	referred	
to	as	a	"Fully	Qualified	Domain	Name"	or	"FQDN."	The	FQDN	of	a	
typical	web	server	might	be	www.farsightsecurity.com	

•  FQDN's	normally	resolve	(or	"get	translated	into")	numeric	IP	
addresses.		

•  FQDNs	can	also	be	set	up	as	an	alias	for	another	domain	name.		

•  And	of	course,	typo'd/broken	FQDNs	may	not	resolve	at	all.	

•  NoOonally,	we	can	represent	this	process	as	shown	on	the	
following	slide...		

116	

Web Browser

Web Server

Domain Name System
Internet

Internet

NoAonal	Diagram	Showing	Web	Browser	Relying	
On	Domain	Name	System	For	the	InformaAon	

	Needed	To	Reach	A	Web	Server	

117	

The	DescripAon	In	The	Preceding	SecAon	Was	Highly	
Simplified.	For	Example,	Caching	Was	OmiCed	

•  If	we	drill	down,	there's	a	lot	more	that's	going	on.	A	lot	of	what	
happens	is	designed	to	ensure	that	unnecessary	work	is	avoided,	
and	performance	remains	good	even	as	DNS	usage	scales	up.	

•  Caching	(or	"saving	recently-received	results")	is	a	big	part	of	that	
strategy.	

•  PreSy	much	all	parts	of	the	DNS	ecosystem	strive	to	remember	
what	they've	recently	seen	so	they	don't	need	to	repeatedly	ask	–	
Ome	ager	Ome	ager	Ome	–	for	answers	to	the	same	quesOons.	

•  This	is	key	for	DNS	use	by	highly	popular	sites	such	as	Amazon,	
Google,	Facebook,	TwiSer,	YouTube,	online	adverOsing	sites,	etc.	

•  Depending	on	how	ogen	things	might	need	to	change,	answers	
may	only	be	cached	for	some	few	seconds,	while	in	other	cases,	
answers	may	be	made	to	persist	for	hours,	days	or	even	weeks	–	
each	domain	administrator	can	pick	what	they	think	is	best.	

118	

Time-To-Live	Value	(TTLs)	
•  Cache	duraOons	are	controlled	by	Time-To-Live	values	("TTLs").		

TTLs	are	specified	in	seconds.	You'll	see	them	(among	lots	of	
other	places)	in	the	output	from	the	Unix	"dig"	command:	

$ dig www.farsightsecurity.com
[...]
www.farsightsecurity.com. 3589 IN A 104.244.13.104
[snip]

These	TTLs	"decrement,"	or	"cook	down."	Rechecking	a	bit	later:	

$ dig www.farsightsecurity.com
[...]
www.farsightsecurity.com. 3541 IN A 104.244.13.104
[snip]

When	the	TTL	hits	0,	the	saved	data	will	be	discarded	from	the	
cache. 119	

Should	TTLs	Be	Long	or	Short,	and	Why?	
•  Long	TTLs	(e.g.,	tens	of	thousands	of	seconds)	mean:	
–  Fewer	queries	for	the	name	servers	to	service,	which	
translates	to	lower	name	server	load	

–  If	a	remote	name	server	does	go	down,	local	name	servers	
that	have	cached	values	may	not	even	noOce	

–  On	the	other	hand,	if	you	need	to	change	the	address	that	a	
server	is	using,	you'll	need	to	wait	while	a	long	TTL	"cooks	
down"	and	expires	so	that	the	new	value	can	get	discovered.	

•  Short	TTLs	(hundreds	of	seconds)	mean:	
–  The	name	servers	will	see	more	requests	
–  ResoluOon	may	be	slightly	slower	(as	some	stuff	that	could	
have	been	efficiently	cached	gets	re-looked-up)	

–  You've	got	reduced	breathing	room	in	an	outage,	BUT	more	
flexibility	if	you	need	to	make	an	"emergency	change"	(as	in	
cases	where	you	may	be	dealing	with	a	DDoS	aSack)	 120	

UNsuccessful	ResoluAons	

•  What	if	a	domain	name	CANNOT	be	successfully	resolved?		
Should	that	NEGATIVE	informaOon	be	remembered,	too?		

•  Why	sure!	What's	the	point	of	asking:	
"Do	you	know	how	to	resolve	asodaosdjasodjasodasd.com?	No?	
Okay."	and	then	potenOally	immediately	repeaOng	that	quesOon	
again,	and	again,	and	again,	and	again....	

•  The	idea	of	remembering	the	fact	that	a	domain	name	could	NOT	
be	resolved	is	customarily	known	as	a	"negaOve	TTL."	

•  NegaOve	TTLs,	like	most	DNS	things,	are	defined	in	RFCs.	
RFCs	are	"Requests	for	Comments,"	Internet	Engineering	Task	
Force	technical	standards.	(Name	notwithstanding,	by	the	Ome	
they're	published,	no	addiOonal	audience	input	is	actually	being	
solicited.)	

•  Anyhow,	see	hSps://tools.ie�.org/html/rfc2308	for	details	about	
negaOve	TTLs.	

121	

Distributed	Name	Servers,	Not	One	Central	One	
•  Another	thing	that	was	simplified	in	the	earlier	diagram	was	the	

way	name	servers	were	represented.	The	Domain	Name	System	
was	just	shown	in	that	diagram	as	one	"blob."	

•  In	fact,	there	is	no	single	central	unified	"god"	name	server	that	is	
omniscient	about	all	the	domain	names	on	the	Internet.		

•  Instead,	there's	a	distributed	set	of	name	servers	that	work	
together	to	resolve	domain	names	"collaboraOvely"	as	required	

•  ResoluOon	begins	with	the	root	of	the	domain	name	tree	(".").	
Ager	that,	authoritaOve	name	servers	provides	informaOon	about	
a	domain	name,	OR	pointers	("referrals")	to	a	name	server	that	
will	get	you	closer	to	compleOng	resoluOon	of	your	domain	name.	

122	

"Huh?"	
•  Start	with	the	stub	resolver	(a	very	simple	name	server)	running	

on	the	user's	laptop.		

•  If	the	stub	resolver	hasn't	recently	cached	the	answer	to	a	
parOcular	DNS	query,	the	stub	resolver	asks	the	user's	ISP's	
recursive	resolver	for	help.	Does	the	ISP's	recursive	resolver		
know	how	to	resolve	that	name?	

•  If	the	ISP's	recursive	resolver	doesn't	have	the	required	bit	of	
informaOon	cached,	the	recursive	resolver	begins	asking	a	series	
of	quesOons	of	authoritaOve	name	servers	in	order	to	find	the	
ulOmate	answer.	

•  See	the	diagram	on	the	following	slide.	
123	

Web Browser

www.farsightsecurity.com

Internet

How It Works

1) User puts www.farsightsecurity.com nto
their web browser

2) Browser automatically asks caching stub
resolver (running on the laptop), “What’s
the IP address for www.farsightsecurity.com?”

3) If stub resolver already knows, it replies with
that IP address. If it doesn’t know, it asks the
recursive resolver. The recursive resolver is
usually run by the Service Provider for use by
all the SP’s customers.

Recursive Resolver

Authoritative
Nameservers

DNS Cache

Top Level Domain
Nameservers

Root Nameservers

Other Authoritative
Nameservers

Domain Name System

Stub Resolver

Laptop

4) If the recursive resolver already knows, it replies with that IP
address. If it doesn’t know, it asks the authoritative name servers.

5) When the recursive resolver receives the IP address answer to
it’s query from the authoritative name servers, it tells the stub
resolver, which tells the web browser. The caching recursive
resolver also remembers the returned IP address (for a while),
in case the same question gets asked again relatively soon.

DNS Cache

124	

DNS	ResoluAon	Is	IteraAve,	and	Recursive	
•  In	the	worst	case,	a	name	server	is	brand	new	and	knows	nothing	

but	the	address	of	the	DNS	root	servers	("dot").	It	would	begin	by	
asking	the	root	name	servers,	"Hey,	what's	the	address	of	the	
name	servers	that	know	about	dot	com?"	

•  Ager	it	learned	the	address	of	the	dot	com	name	servers,	it	
would	ask	one	of	those	name	servers,	"OK!	Now	let	me	ask	you:	
what's	the	address	of	the	name	servers	that	know	about	the	
domain	farsightsecurity.com?"	

•  Ager	it	learned	the	address	of	those,	it	would	finally	ask	one	of	
them,	"Hey,	what's	the	address	of	www.farsightsecurity.com?"	

•  This	process	is	shown	diagrammaOcally	in	the	following	graphic.	
125	

What’s the IP address of
www.farsightsecurity.com?
I’ll ask the recursive resolver!

Recursive Resolver The Authoritative
Server Says…

k.root-servers.net
(at the bootstrap
address 193.0.14.129)
says “one of the name
servers for dot com is
e.gtld-servers.net
at 192.12.94.30”

I know the (static) address
of the root name servers.
Let me ask one of them
for an address of one of
the authoritative servers

for dot com…

First step…

Now that I know the address
for a dot com name server,
let me ask it for the address
of one of the authoritative

servers for farsightsecuity.com

e.gtld-servers.net
(at the IP address
192.12.94.30) says “one
of the name servers for
farsightsecurity.com is
ns5.dnsmadeeasy.com at
208.94.148.13”

Second step…

Now that I know the
address for one of the

farsightsecurity.com name
servers, let me ask it for

the address of the
www.farsightsecuity.com

ns5.dnsmadeeasy.com
(at the IP address
208.94.148.13) says
“the address for
www.farsightsecurity.com
is 104.244.13.104”

Final step…

126	

Redundant	AuthoritaAve	Name	Servers	
•  There's	sOll	a	bit	more	complexity	that	has	been	omiSed	from	the	

diagrams	you	just	saw,	and	that	relates	to	redundancy:		
name	servers	are	"criOcal	infrastructure"	and	you	always	want	
them	to	work.	That	normally	means	deploying	"more	than	one	of	
them,"	even	if	we	didn't	show	that	on	the	preceding	diagrams.	

•  This	means	that	there	will	be	mulOple	root	servers,	mulOple	top	
level	domain	servers,	and	mulOple	authoritaOve	name	servers.	

•  By	deploying	mulOple	name	servers,	even	if	one	(or	more)	servers	
is	down	or	unreachable,	one	of	the	others	can	respond,	instead.	

•  Q:	"But	how	do	they	stay	synchronized?"	A:	"One	server	acts	as	
the	"master"	for	each	zone.	The	slave	servers	periodically	check	
that	master	server,	and	if	necessary,	downloads	updated	data."	

•  You	can	see	the	presence	of	redundant	name	servers	in	the	
output	of	the	Unix	"dig +trace"	command	on	the	next	slides...	

127	

How	Do	We	Resolve	www.farsightsecurity.com?	
(showing	redundant	name	servers	at	each	stage)	
$ dig +trace www.farsightsecurity.com
[...]

. 491686 IN NS j.root-servers.net. [13 root servers]

. 491686 IN NS m.root-servers.net.

. 491686 IN NS k.root-servers.net.

. 491686 IN NS i.root-servers.net.

. 491686 IN NS b.root-servers.net.

. 491686 IN NS c.root-servers.net.

. 491686 IN NS l.root-servers.net.

. 491686 IN NS e.root-servers.net.

. 491686 IN NS f.root-servers.net.

. 491686 IN NS d.root-servers.net.

. 491686 IN NS g.root-servers.net.

. 491686 IN NS a.root-servers.net.

. 491686 IN NS h.root-servers.net.

;; Received 508 bytes from 75.75.75.75#53(75.75.75.75) in 221 ms

[continued]
128	

(conAnued	#1)
com. 172800 IN NS f.gtld-servers.net. [13 gTLD servers]
com. 172800 IN NS l.gtld-servers.net.

com. 172800 IN NS c.gtld-servers.net.

com. 172800 IN NS h.gtld-servers.net.

com. 172800 IN NS k.gtld-servers.net.

com. 172800 IN NS m.gtld-servers.net.

com. 172800 IN NS b.gtld-servers.net.

com. 172800 IN NS j.gtld-servers.net.

com. 172800 IN NS g.gtld-servers.net.

com. 172800 IN NS a.gtld-servers.net.

com. 172800 IN NS i.gtld-servers.net.

com. 172800 IN NS e.gtld-servers.net.

com. 172800 IN NS d.gtld-servers.net.

;; Received 502 bytes from 192.112.36.4#53(192.112.36.4) in 279 ms

129	

(conAnued	#2)

farsightsecurity.com. 172800 IN NS ns5.dnsmadeeasy.com. [3 servers]
farsightsecurity.com. 172800 IN NS ns6.dnsmadeeasy.com.

farsightsecurity.com. 172800 IN NS ns7.dnsmadeeasy.com.

;; Received 184 bytes from 192.43.172.30#53(192.43.172.30) in 85 ms

www.farsightsecurity.com. 3600 IN A 104.244.13.104
farsightsecurity.com. 3600 IN NS ns7.dnsmadeeasy.com. [3 servers]
farsightsecurity.com. 3600 IN NS ns5.dnsmadeeasy.com.

farsightsecurity.com. 3600 IN NS ns6.dnsmadeeasy.com.

;; Received 124 bytes from 208.94.148.13#53(208.94.148.13) in 17 ms

130	

No	MaCer	What	Gets	Shown,	There	Are	Actually		
More	Than	13	Root/gTLD	Name	Servers	

•  While	the	dig +trace	command	we	just	showed	menOoned	13	
root	name	servers	and	13	gTLD	name	servers,	there	are	actually	
many	more	than	that.	This	is	accomplished	via	"anycast."	

•  Anycast	involves	announcing	the	*same*	IP	address	block	at	
mulOple	sites.		For	example,	ICANN	adverOses	the	"L"	root	server	
IP	address	block	from	158	sites	(as	of	the	Ome	this	was	wriSen),	
and	the	University	of	Maryland	announces	the	"D"	root	server	IP	
address	block	from	106	sites	(as	of	the	Ome	this	was	wriSen)	

•  Thanks	to	the	magic	of	the	Internet's	wide	area	rouOng	system	
("BGP"),	you	always	automaOcally	end	up	using	the	"closest"	
instance	for	any	given	name	server.	

131	

Look	at	Just	The	LocaAons	Where	The	"L"	Root	Lives

132	
[Green=IPv6	enabled;	Brown=IPv4	only]	

2)	Domain	Name	
Structure	and	Nomenclature	

"Look,	I	know	there's	a	lot	of	jargon	but		
some	of	these	really	are	self-explanatory."	

	
Dan	Rydell	(a	character	in	the	movie	"Sports	Night"),		

in	response	to	being	asked	if	throwing	a		
"perfect	game"	is	"good"	

	
	

Like	sports,	DNS	also	has	a	lot	of	jargon,		
but	unfortunately	very	liSle	of	it	is	self-explanatory	

Fully	Qualified	Domain	Name	Nomenclature	

•  Decomposing	a	FQDN,	such	as	www.alumni.caltech.edu,	we	see:	
	
--	edu	is	a	Top	Level	Domain	(TLD)	
--	caltech.edu	is	the	2nd	Level	Domain	(what	a	domain		
				registrant	normally	registers	with	a	registrar)	
--	alumni.caltech.edu	is	a	subdomain	of	caltech.edu	
--	www.alumni.caltech.edu	is	the	FQDN	(or	"hostname")	

•  There's	also	an	implicit/unwriSen	"dot"	at	the	right	side	of		
www.alumni.caltech.edu	–	that's	the	"root"	of	the	
enOre	DNS.	It	is	normally	not	shown	or	specified	when	domain	
names	are	used	(although	you	will	see	it	in	DNSDB	output)	

•  See	the	following	diagram.	
134	

Hierarchical	Domains	

Root (“dot”)

.edu.com .net .org .gov [etc]

.berkeley.edu .rpi.edu.harvard.edu.caltech.edu .mit.edu

www.caltech.edujpl.caltech.edu

.cmu.edu

library.caltech.
edu

.jhu.edu

alumni.caltech.edu

www.alumni.caltech.edumail.alumni.caltech.edu

135	

Subdomains	
•  In	a	large	organizaOon,	some	units	may	be	(more-or-less)	

autonomous,	and	might	want	to	manage	their	own	domain	
names.	For	example,	a	university's	engineering	school	and	the	
alumni	associaOon	might	both	want	to	run	their	own	DNS.		

•  In	that	case,	the	school's	central	DNS	admin	team	might	create		
and	delegate	two	subdomains	of	the	insOtuOon's	domain,	e.g.,	
engineering.example.edu,	and	alumni.example.edu	

•  Departmental	DNS	people	might	then	create	FQDN's	under	that	
subdomain,	or	delegate	further	sub-sub-domains,	perhaps:	
--	chemical.engineering.example.edu	
--	civil.engineering.example.edu	
--	electrical.engineering.example.edu	
--	mechanical.engineering.example.edu	

•  And	going	one	step	further,	a	FQDN	(hostname)	might	look	like	
ilovemanualtransmissions.mechanical.engineering.example.edu	
	 136	

How	Do	I	Know	If	A	Label	Is	A	"Hostname"?	
•  When	you	see	a	label	such	as	"alumni.caltech.edu",	you	can't	tell	

just	by	looking	at	it	whether	that's	a	hostname	in	it's	own	right,	or	
just	a	subdomain	(with	other	FQDNs	appearing	below	it),	or	both.	

•  Caltech.edu	(all	by	itself)	might	be/is	a	perfectly	OK	hostname.	
•  You	also	can't	tell	(just	by	looking	at	it)	whether	there's	a	server	

"behind"	any	given	name,	or	whether	all	servers	are	only	
assigned	below	that	label,	or,	for	that	maSer,	what	a	server's	
being	used	for.	

•  Domain	name	labels	can	someOmes	be	used	in	misleading	ways:	
--	www.something	will	oGen	be	a	web	server,	but	it	doesn't	have	
				to	be	
--	mail.something	will	oGen	be	a	mail	server,	but	it	doesn't	have	
				to	be	
--	ns1.something	will	oGen	be	a	name	server,	but	it	doesn't	have	
				to	be	

137	

More	Than	One	FQDN	May	Point	At	One	IP	
•  For	example,	imagine	a	big	web	server.		

•  It	might	host	hundreds	or	even	thousands	of	different	smaller	
web	sites	all	serviced	from	a	single	IP	address.	For	example,	
maybe	a	site	has	a	set	of	athleOc	web	sites	all	handled	by	a	big	
shared	web	server:	

	
[Note:	192.0.2.153	is	an	IP	from	a	special	block	of	IP's	reserved	for	
use	in	documentaOon,	see	hSps://tools.ie�.org/html/rfc5735]	

[etc]basketball.example.edu baseball.example.edufootball.example.edu

192.0.2.153

138	

A	Single	FQDN	May	Point	At	More	Than	One	IP	
•  On	the	other	hand,	imagine	a	really	busy	web	server.	A	single	site	

might	have	so	much	(potenOally	crushing!)	traffic	that	it	needs	
mulOple	physical	servers	to	handle	it	all.		

•  The	domain	name	system	makes	it	easy	to	accommodate	that	
load:	just	point	the	busy	web	server	name	at	a	set	of	servers,	
each	on	a	different	IP	address.	Traffic	gets	sent	to	IPs	on	a	round-
robin	basis,	much	the	way	a	commercial	load	balancer	(such	as	an	
F5	box)	ogen	is	used....	

[etc]192.0.2.30 192.0.2.34192.0.2.25

free-concert-tickets.example.edu

139	

A	Domain	Name	Can	Point	At	Another		
Domain	Name	Rather	Than	At	An	IP	Address	

•  Domain	names	that	point	at	other	domain	names	are	normally	
called	"CNAMES."	You	can	think	of	these	as	addiOonal	aliases	that	
can	be	used	in	lieu	of	a	host's	primary	name.	For	example:	
	
senate.uoregon.edu.	IN	CNAME	faprod.uoregon.edu.	
parking.uoregon.edu.	IN	CNAME	faprod.uoregon.edu.	
commiSees.uoregon.edu.	IN	CNAME	faprod.uoregon.edu.	
faciliOes.uoregon.edu.	IN	CNAME	faprod.uoregon.edu.	
courseevals.uoregon.edu.	IN	CNAME	faprod.uoregon.edu.	
riskmanagement.uoregon.edu.	IN	CNAME	faprod.uoregon.edu.	
[etc]	
	

•  If	faprod.uoregon.edu	ever	needed	to	move	to	a	new	IP	address,	
you	could	just	change	it,	not	each	and	every	one	of	these	sites...	

140	

IP	Addresses	Can	(SomeAmes)	Also		
Be	Mapped	Back	To	A	Domain	Name	

•  Just	as	you	can	map	a	domain	name	to	an	IP	address,	you	can	also	
(someOmes)	map	an	IP	address	back	to	a	domain	name:	

•  Normal	domain	name	to	IP	DNS	resoluOon	might	look	like:	
	 	drupal-cluster5.uoregon.edu	è	128.223.142.244	

•  Reverse	(IP	to	domain	name)	DNS	resoluOon	might	look	like:	
	 	244.142.223.128.in-addr.arpa	è		
	 	 	drupal-cluster5.uoregon.edu	

•  These	are	normally	called	"inverse	address"	or	"pointer"	records.	
Does	the	following	help	you	to	see	why?	
	
	 	$	dig	-x	128.223.142.244	
	 	[...]	
	 	244.142.223.128.in-addr.arpa.	86400		IN		PTR 		
	 	 	drupal-cluster5.uoregon.edu.	 141	

Generic	TLDs	(Regular	Domain	Names)	

•  gTLDs	are	managed	by	ICANN,	the	Internet	CorporaOon	for	
Assigned	Names	and	Numbers.	TradiAonal	generic	TLDs	
include	.com,	.net,	.org,	.edu,	.gov,	.mil,	.int,	.biz,	.info,	.mobi,		
.name,	.jobs,	.me,	.xxx,	.pro,	.aero,	.jobs,	.asia,	.museum,	.tel,		
and	.travel.		

•  Some	gTLDs	are	unrestricted	(e.g.,	anyone	can	register	a	domain	
in	them),	such	as	.com,	.net,	.org,	and	.info	

•  Other	gTLDs	are	limited	to	just	parAcular	communiAes.	
For	example:	.edu's	are	now	limited	to	just	accredited	US	colleges	
and	universiOes;	.gov	is	restricted	to	just	American	government	
agencies;	.mil	is	limited	to	just	the	US	Army,	Navy,	Air	Force,	
Marines,	and	Coast	Guard;	.int	is	just	for	internaOonal	
organizaOons	(such	as	NATO)	

•  gTLDs	are	most	common,	but	there	are	also	many	other	types	of	
top	level	domains.	 142	

ccTLDs	
•  ccTLDs	are	two	leSer	"Country	Code"	top	level	domains	such	as:	

	
.ar	ArgenOna 	 	 	.au	Australia 	 	 	.be	Belgium	
.br	Brazil 	 	 	 	.ca	Canada	 	 	 	.ch	Switzerland	
.co	Colombia 	 	 	.cn	China	 	 	 	 	.de	Germany	
.es	Spain 	 	 	 	.eu	European	Union 	.fr	France	
.in	India	 	 	 	 	.it	Italy	 	 	 	 	.nl	Netherlands	 		
.pl	Poland 	 	 	 	.ru	Russia 	 	 	 	.tk	Tokelau	 	 		
.uk	United	Kingdom 	.us	United	States 	 	etc.	

•  Most	ccTLD	abbreviaOons	are	self	explanatory,	but	there	are	
some	noteworthy	excepOons	such	as	ch=	Switzerland	(Cantons	of	
HelveOca),	de=Deutschland,	dz	=	Algeria	(Dzayer	in	Berber),	etc.		

•  There	are	254	ccTLDs	in	total,	see	the	country	code	TLDs	listed	
as	part	of	hSps://icannwiki.com/CcTLD	

143	

Weird	ccTLD	Factoids	
•  So-called	"open"	ccTLDs	have	been	"disconnected"	from	the	

countries	they're	named	ager.	For	example,	.tk	was	sold	by	the	
Tokelau	government	and	is	now	largely	used	for	free	domain	
registraOons	(and	not	by	the	1,400	or	so	people	of	Tokelau)	

•  Some	ccTLDs	register	new	2nd-level	domains	differently	
than	.com,	.net,	etc.,	do.	For	example,	most	commercial	domains	
in	the	uk	get	registered	under	.co.uk,	not	directly	under	.uk	(we	
call	.co.uk	and	similarly	situated	domains	"effecOve	TLDs")	

•  Some	legacy	ccTLDs	sOll	exist	even	if	the	associated	country	no	
longer	exist.	For	example:	.su	(Soviet	Union)	

•  ccTLDs	are	not	subject	to	ICANN	contractual	requirements.	This	
means	that	they	are	run	as	the	individual	ccTLD	operators	deem	
appropriate.	In	some	cases,	this	translates	to	things	like	no	
requirement	for	publicly	available	whois	service	(whois	normally	
tells	you	who	owns/controls	a	given	domain)	

144	

IDNs	(InternaAonalized	Domain	Names)	
•  Most	TLDs	use	"normal"	("Roman"	or	"LaOn")	leSers,	numbers	

and/or	hyphens,	and	can	be	up	to	63	characters	long.	
•  IDNs	were	created	to	meet	the	needs	of	those	using	languages	

with	other	scripts,	such	as:	
--	Arabic	
--	Chinese	
--	Cyrillic	(Russian)	
--	Greek	
--	Hangul	(Korean)	
--	Hebrew	
--	Indian	(Bangla,	Devanagari,	GujaraO,	Gurmukhi,	Tamil,	Telugu)	
--	Katakana	(Japanese),	etc.	

•  IDNs	get	represented	two	ways:	as	a	"U	label"	(presentaOon	
format,	using	the	internaOonal	character	set,	such	as	中信),	and	
as	an	"A	label"	(the	ASCII-encoded	form,	such	as	xn--fiq64b)	

145	

InternaAonalized	Domain	Names	(cont)	
•  This	is	now	a	valid	domain	name:	はじめよう.みんな	

Plug	it	into	your	browser,	and	you'll	be	taken	to	that	web	site.	
[Anyone	want	to	aSempt	pronunciaOon	of	that	domain	name?]	

•  That	same	name	in	Punycode	ASCII	format	gets	wriSen:	
xn--p8j9a0d9c9a.xn--q9jyb4c		
	
Note:	Punycode-format	IDNs	always	begin	"xn—"	

•  Need	to	manually	convert	between	the	two?	See		
hSp://idna-converter.com/	
	

•  More	resources	relaOng	to	IDN's:	
hSps://www.icann.org/resources/pages/more-2012-05-08-en	

146	

New	gTLDs	

•  Recently	ICANN	has	begun	the	creaOon	of	over	1,300	new	gTLDs,	
such	as	.xyz,	.red,	.faith,	.london,	stream,	etc.,	see	1,188	listed	at	
hSp://newgtlds.icann.org/en/program-status/delegated-strings	
for	the	new	gTLDs	delegated	to-date	

•  Some	of	these	new	gTLDs	are	restricted	to	designated	
communiOes,	others	are	open	and	new	domains	can	be	
registered	by	anyone	(someOmes	for	as	liSle	as	$0.49/domain,	as	
can	be	seen	at	hSps://tld-list.com/		(click	on	"Cheapest	Register"	
to	sort	by	domain	name	cost))	

•  Trademark	holders	can	use	the	new	Trademark	Clearinghouse	to	
protect	their	marks	against	possible	diluOon	by	registrants	in	the	
new	gTLDs,	see	hSp://newgtlds.icann.org/en/about/trademark-
clearinghouse.			

•  QuesTon:	has	your	company	protected	its	own	marks	via	the	
Trademark	Clearinghouse?	 147	

We've	Been	Talking	About	Names,	What	About	IPs?	
•  Even	though	domain	names	are	important,	and	we	like	talking	

about	domain	names,	computers	and	computer	networks	also	
need	IP	addresses.	

•  Just	as	there's	a	lot	of	jargon	around	domain	names,	there's	a	lot	
of	jargon	around	IP	addresses,	too.	

148	

3)	IPv4	and	IPv6	Addresses	

The	CriAcal	Role	of	IP	Addresses	

•  While	we	ogen	refer	to	Internet	resources	according	to	their	
domain	names,	each	server/workstaAon/laptop/tablet/
smartphone/etc.	requires	an	IP	address	to	connect	to	the	
Internet.	

•  A	host	may	have	a	tradiOonal	("IPv4")	address,	a	much	longer	
"new-fangled"	IPv6	address,	or	both.	

•  We'll	talk	about	IPv4	addresses	a	liSle	first.	

150	

IPv4	Addresses	and	Prefixes	

•  TradiOonal	("IPv4")	IP	addresses,	consist	of	four	integers	
separated	by	dots	(that's	why	these	are	also	ogen	known	as	
"doSed	quads").	Each	of	the	four	values	can	have	a	value	from		
0	to	255.	For	example:	104.244.13.104	

•  Ranges	of	IPv4	addresses	are	expressed	in	a	variety	of	forms,	
most	simply	by	staOng	a	starOng	and	ending	address.	For	
example:	104.244.12.0	-	104.244.15.255	

•  IPv4	address	ranges	can	also	be	expressed	as	"CIDR	prefixes."	
CIDR	prefixes	consist	of	a	starOng	address	and	a	"mask	length"	or	
"prefix	length"	indicaOve	of	the	size	of	the	block	(see	the	table	in	
a	few	pages).	For	example,	104.244.12.0	-	104.244.15.255	can	
also	be	represented	in	CIDR	notaOon	as	104.244.12.0/22	

151	

Classless	(CIDR)	Addressing:	
	Much	More	Flexibility...	

•  Some	commonly	seen	CIDR	lengths	–	note	the	paSern	(each	
longer	mask	has	½	the	number	of	addresses	of	the	preceding)	
	

[...]	 	 	 	 	 	 	 	 	 	 	/23	 	512	IPv4	addresses	
/14	 	262,144	IPv4	addresses 	 	 	/24	 	256	IPv4	addresses	
/15	 	131,072	IPv4	addresses 	 	 	/25	 	128	IPv4	addresses	
/16	 	65,536	IPv4	addresses 	 	 	/26	 	64	IPv4	addresses	
/17	 	32,768	IPv4	addresses 	 	 	/27	 	32	IPv4	addresses	
/18	 	16,384	IPv4	addresses 	 	 	/28	 	16	IPv4	addresses	
/19	 	8,192	IPv4	addresses 	 	 	 	/29	 	8	IPv4	addresses	
/20	 	4,096	IPv4	addresses 	 	 	 	/30	 	4	IPv4	addresses	
/21	 	2,048	IPv4	addresses 	 	 	 	/31	 	2	IPv4	addresses	
/22	 	1,024	IPv4	addresses 	 	 	 	/32	 	1	IPv4	address	 152	

Whois	

•  Whois	tells	you	"who	is"	responsible	for	a	given	number	or	name.	
You	can	query	whois	for	domain	names,	IP	addresses,	and	ASNs.	

	
•  You	can	access	whois	informaOon	from	the	command	line.		

In	a	Unix	terminal	window,	you	can	enter:		
	
	 	$ whois farsightsecurity.com

•  You	can	also	query	whois	over	the	web	from	a	variety	of	3rd	party	
web	gateways,	such	as	hSps://dnsquery.org/whois/	

	
•  Some	domain	whois	data	may	be	hidden	behind	proxy/private	

registraOons,	obfuscaOng	the	true	owner	of	the	domain	name.	

153	

Types	of	IPv4	Addresses	

•  Globally	routable	IP	addresses:	these	addresses	are	usable	
worldwide,	and	will	be	unique	worldwide.	These	are	"regular"	or	
"normal"	IPv4	addresses.	We	can	further	subdivide	regular	IPv4	
addresses	into:	
	
–  Provider	independent	(PI)	globally	routable	IP	addresses:	these	addresses	

can	be	used	with	any	single	provider,	or	with	any	combinaOon	of	providers.	
	

–  Provider	assigned	(PA)	globally	routable	IP	addresses:	these	addresses	are	
provided	for	your	use	by	your	upstream	provider.	If	you	leave	that	
provider,	you	"can't	take	them	with	you."	If	you	leave,	you'll	need	to	
"renumber	out	of	that	block"	into	a	new	block	of	address	space,	returning	
your	previous	block	for	some	other	customer	to	eventually	use.		
	
Do	NOT	aSempt	to	have	some	third	party	ISP	adverOse	PA	address	space	
on	your	behalf	(the	third	party	ISP	normally	won't	do	it,	anyhow).	

154	

RFC1918	Addresses	for	Private	Intranets	
•  RFC	1918	address	space	consists	of	three	IP	address	ranges:	

10.0.0.0-10.255.255.255	 	 	(10/8	prefix)		
172.16.0.0-172.31.255.255	 	(172.16/12	prefix)		
192.168.0.0-192.168.255.255		(192.168/16	prefix)	

•  You	can	use	these	addresses	however	you	like	–	within	your	own	
site.	However,	you	CANNOT	route	those	addresses	to	the	
Internet	as	a	whole.	To	understand	why,	realize	that	thousands		
of	sites	might	have	networks	using	addresses	from	the	address	
range	10.0.0.0-10.255.255.255	–	how	would	the	Internet	know	
which	one	of	those	was	the	"right	one?"	

•  RFC1918	addresses	are	perfect,	however,	for	things	like	
networked	printers	that	should	only	be	used	by	local	people.	

155	

Network	Address	TranslaAon	(NAT)	
•  You	may	use	already	be	using	RFC1918	addresses	on	your	own	

home	network.	A	common	scenario	is	that	you:	
–  Receive	a	publicly	routable	address	from	Comcast,	CenturyLink,	etc.	
–  You	then	use	a	wireless	access	point/"router"	to	connect	all	of	your	

family's	devices	to	the	Internet,	sharing	that	one	public	IP.	
–  This	is	done	through	use	of	RFC	1918	address	space	within	your	home,	

with	those	private	addresses	automaOcally	"translated"	to	the	single	public	
IP	address	you	received	from	your	ISP.	

•  Sounds	like	magic,	right?	It	sort	of	is,	but,	unfortunately,	it	does	
have	some	downsides:	
–  It	is	difficult	(although	not	impossible)	to	run	servers	from	behind	a	NAT'd	

IP	address	(most	broadband	providers	ban	home	servers,	anyhow)	
–  NAT	boxes,	because	they	need	to	rewrite	IP	addresses,	need	to	be	

"protocol	aware"	–	this	means	that	H.323	video	conferencing	may	have	
trouble	traversing	some	NAT	boxes	

–  An	ISP	can't	tell	which	host	behind	a	NAT	box	might	be	boSed,	if	bad	traffic	
is	seen	gejng	emiSed	from	a	shared	IP	 156	

Localhost/Loopback	Address	

•  127.0.0.1	is	a	special	IPv4	"loopback"	address	that	refers	to	the	
host	itself.		
	
The	host	can	talk	to	it's	own	127.0.0.1	(and	other	addresses	in	
127.0.0.0/8),	but	no	one	is	able	to	talk	to	someone	else's	
127.0.0.0	addresses.	

157	

Assigning	IPs	to	Systems:	StaAc	vs	Dynamic	
•  Servers	in	a	department	probably	need	"staOc"	IP	addresses.	

These	are	IPs	that	have	been	manually/permanently	assigned	for	
use	by	that	parOcular	computer.	They	will	normally	be	associated	
with	a	meaningful	public	hostname,	such	as	finance.example.edu	

•  User	laptops,	tablets,	smart	phones,	etc.	will	probably	be	
automaOcally	given	temporary,	or	"dynamically	assigned,"	IP	
addresses	from	a	site's	DHCP	server.	These	address	"leases"	
might	last	for	just	a	few	hours,	but	can	be	renewed	if	needed	for	
a	longer	period.	DHCP	names	are	seldom	very	exciOng	(perhaps	
looking	like	dhcp-250.example.edu	or	dyn-110-72.something.edu)	

•  Samantha	Smith's	laptop	might	use	dhcp-250.example.edu	this	
morning,	and	dhcp-18.example.edu	this	agernoon,	while	Jimmy	
Johnson's	iPad	might	use	dhcp-250.example.edu	this	agernoon.	

•  DHCP	allows	IPs	to	be	easily	assigned,	and	allows	a	relaOvely	
small	pool	of	addresses	to	be	shared	by	a	large(r)	pool	of	users.	

158	

Where	Do	Sites	Request	Blocks	of	IP	Addresses?	

•  Small	customers	(such	as	an	individual	or	a	new	startup	business)	normally	get	
small	blocks	of	IP	address	space	from	their	upstream	Internet	Service	Provider.		

•  Larger	sites	(such	as	an	established	naOonal	or	regional	ISP	that	is	mulO-homed	
(connected	to	two	or	more	upstream	providers	using	BGP))	normally	request	
provider-independent	address	space	from	their	regional	registry.	

hSps://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Regional_Internet_	
Registries_world_map.svg/2000px-Regional_Internet_Registries_world_map.svg.png	159	

Sadly,	The	World's	Largely	Run	Out		
of	Unassigned	IPv4	Addresses	

•  IPv4	addresses	are	just	32	bits	long.	That	means	that	there's	only	
a	maximum	of	2^32=4,294,967,296	potenOal	addresses	
available.	

•  There's	actually	not	that	many	potenOal	addresses,	and	in	fact	
they've	run	out	fast.	See	the	graph	on	the	following	page.	

160	

IPv4	Address	Run	Out	By	Regional	Registry	

Source:	hSp://www.potaroo.net/tools/ipv4/	
161	

Fortunately	We	Have	Lots	of	IPv6	Addresses	

•  IPv6	addresses	are	a	liSle	different.	For	example,	IPv6	addresses	
are	wriSen	a	liSle	differently	than	IPv4	addresses.	

•  	IPv6	addresses	are	normally	wriSen	as	a	series	of	32	hexadecimal	
leSers,	broken	into	colon-separated	4-character	chunks.	

•  One	such	sample	IPv6	address:	2620:11c:f004::104	

•  When	wriOng	IPv6	addresses,	leading	zeros	within	a	chunk	can	
be	omiSed	(as	was	done	in	the	"11c"	and	"104"	chunks	above).		
If	there's	a	run	of	zeros	in	an	IPv6	address,	those	can	be	replaced,	
in	one	locaAon	only,	with	two	successive	colons.	

•  Verbose	form:	2620:011c:f004:0000:0000:0000:0000:0104	
162	

"What's	That	About	Hexadecimal	Numbers	Again?"	
•  Decimal	(base	10)	numbers	are	wriSen	using	the	digits	0	-	9.	

Hexadecimal	numbers	(base	16)	are	wriSen	using	0	-	9	PLUS		
the	leSers	A	(=10),	B	(=11),	C	(=12),	D	(=13),	E	(=14),	F	(=15)	

•  Place 	 	Decimal: 	 	 	 	Hexadecimal:	
1st 	 	 	10^0=1's 	 	 	 	16^0=1's	
2nd 	 	 	10^1=10's 	 	 	 	16^1=16's	
3rd 	 	 	10^2=100's 	 	 	16^2=256's	
4th 	 	 	10^3=1,000's 	 	 	16^3=4096's	
	

•  Convert	5178	(decimal)	to	hexadecimal:	
5178/4096=1	with	1082	leg	over	
1082/256=4	with	58	leg	over	
58/16=3	with	10	leg	over	
10/1=10	(wriSen	as	"A")		è	143A	(hexadecimal)	

163	

"So	How	Many	IPv6	Addresses	Can	I	Get?"	
•  The	Internet	may	be	just	about	out	of	IPv4	addresses,	but	IPv6	

addresses	are	available	in	barge-size	quanOOes.	Then	again,		
we	use	IPv6	addresses	a	liSle	more	liberally,	too.	

•  In	IPv4	world,	a	typical	subnet	was	a	/24,	or	256	addresses.		
•  In	the	IPv6	world,	a	normal	subnet	is	an	IPv6	/64,	or	

2^64=	18,446,744,073,709,551,616	addresses.	That's	many	more	
addresses	than	all	the	addresses	in	the	IPv4	Internet,	worldwide.	

•  Each	IPv6	subnet	gets	that	many	addresses	even	though	a	typical	
subnet	might	only	have	a	handful	(or	perhaps	a	few	hundred)	of	
those	addresses	in	use.	This	seems	horribly	weird	and	wasteful,	
but	don't	worry,	IPv6	is	intended	to	be	used	this	way.	

•  Mentally	think	"an	IPv6	/64	represents	a	host,	or	maybe	a	small	
number	of	hosts,"	and	you'll	be	okay.	If	you	think	"an	IPv6	/64	is	
18,446,744,073,709,551,616	addresses,"	you'll	need	therapy.	

164	

Normal	IPv6	AllocaAons	and	IPv6	CIDR	Sizes	
•  A	single	local	network	normally	uses	a	/64.	
•  A	smaller	end	site	needing	mulOple	subnets	normally	gets	an		

IPv6	/56.	How	many	IPv6	/64's	can	that	site	deploy?	(see	table)	
•  A	provider	(such	as	a	small	local	ISP)	might	gets	an	IPv6	/48;	

how	many	small	end	sites	can	they	give	a	/56	to?	(see	table)	
•  If	you	use	up	what	you've	iniOally	received,	you	can	request	more	

[more	about	IPv6		allocaOons:	hSps://tools.ie�.org/html/rfc6177]	
	Prefix 	 	#	of	IPv6	48's 	 	#	of	IPv6	/56's	 	#	of	IPv6	/64's	
	/36	 	 	4,096 	 	 	 	1,048,576 	 	 	268,435,456	
	/40	 	 	256 	 	 	 	65,536	 	 	 	16,777,216	
	/44	 	 	16 	 	 	 	 	4,096 	 	 	 	1,048,576	
	/48	 	 	1 	 	 	 	 	256 	 	 	 	65,536	
	/56	 	 	 	 	 	 	 	1 	 	 	 	 	256	
	/64	 	 	 	 	 	 	 	 	 	 	 	 	1	

	
165	

Types	of	IPv6	Addresses	
•  There	are	a	wide	number	of	different	types	of	IPv6	addresses,	in	

part	because	there	were	many	aSempts	to	map	IPv4	addresses	
"automagically"	over	into	IPv6	through	gateway	services.	
A	summary	of	those	types	can	be	seen	at	hCps://www.ripe.net/
parAcipate/member-support/new-lir/ipv6_reference_card.pdf	
	

•  The	most	commonly	seen	types	of	naOve	IPv6	addresses?	
	
--	Globally	routeable	unicast	addresses	
--	Unique	Local	Addresses,	the	IPv6	equivalent	of	RFC1918	IPv4	
				private	address	space	(all	from	fc00::/7)	
--	Link	Local	Addresses,	most	commonly	seen	when	looking	at	
				IPv6-enabled	hosts	that	don't	have	a	globally	routeable	address	
				or	ULA	address	(seeing	just	an	fe80	address	is	ogen	a	sign	that		
				you	don't	actually	have	IPv6	internet	connecOvity)	

166	

4)	DNS:	ConnecAng	Domain	Names	to	IPs	

ConnecAng	Names	to	IPs	and	IPs	to	Names	
•  We've	talked	a	liSle	about	names	and	a	liSle	about	IPs.		

•  Now	let's	come	back	to	talking	a	liSle	about	how	DNS	connects	
the	two	together.	

168	

Resource	Record	Format	

•  DNS	relaOonships	are	defined	in	"resource	records."	

•  A	sample	DNS	resource	record	looks	like	this:	
	
www.farsightsecurity.com. 3600 IN A 104.244.13.104	
	

•  The	first	field	is	the	domain	name.	
•  The	second	field	is	the	TTL,	or	Ome	to	live	(which	we've	already	

introduced	in	our	earlier	caching	discussion).	
•  The	third	field,	the	"class	code,"	will	almost	always	be	

"IN"	("Internet"),	and	can	normally	be	ignored.	
•  The	fourth	field	is	the	DNS	record	type.	In	this	example,	we	have	

an	"A"	record	(a	normal	IPv4	name-to-IP	address	record)	
•  The	figh	and	final	field	is	RDATA,	in	this	case,	an	IPv4	address.	

	 169	

DNS	Record	Types	

•  As	we've	previously	menOoned,	here	are	many	different	types	of	
DNS	records:	
	
–  A:	Normal	domain	nameàIPv4	address	record	
–  AAAA:	Normal	domain	name	à	IPv6	address	records	
–  CNAME:	Domain	name	à	different	domain	name	
–  NS:	Name	Server	records	(tells	what	name	servers	to	use	for	a	domain)	
–  MX:	Mail	eXchanger	records	(where	should	I	send	email	for	this	domain?)	
–  TXT:	Text	records,	capable	of	carrying	arbitrary	text	
–  SOA:	Start	Of	Authority	records,	defines	the	TTL	and	other	zone		

parameters	
–  SRV:	Server	pointer	records,	explaining	where	to	find	a	service	(IP	address	

and	port	informaOon)	
–  And	there	are	others,	but	only	a	comparaOve	handful	get	widely	used.	

170	

Record	Types	Seen	In	A	Day's	Worth	of	DNS	Data	

171	

A	Less	Commonly	Talked-About	Record	Type:	SOA	
•  $ dig farsightsecurity.com SOA +short  

fsi.io. hostmaster.fsi.io. 2016101202 7200 3600
604800 3600  
Decoded...	

•  Primary	master	server	for	the	zone?	That's	at	the	FQDN	fsi.io	
•  Contact	address?	hostmaster@fsi.io	(sub	an	@	sign	for	the	first	.)	
•  Serial	Number/date	gets	updated	whenever	the	zone	is	changed	
•  Refresh:	secondary	servers	are	told	to	wait	this	long	between	

checks	to	see	if	primary	has	updated	(7200	seconds	in	this	case)	
•  Retry:	secondary	can't	talk	to	primary?	try	again	in	3600	seconds	
•  Expire:	secondary	can't	talk	to	primary?	treat	cached	zone	data	as	

being	sOll	valid	for	a	week	(604800	seconds)	
•  NegaOve	caching	Ome:	if	you	get	an	NXDOMAIN	for	names	in	this	

domain,	remember	that	negaOve	response	for	3600	seconds	
•  See	also	dig's	+multiline	opOon	for	SOA	records	

172	

Wildcard	DNS	

•  Normally	DNS	servers	only	send	out	answers	for	specific	FQDNs.	

•  However,	some	name	servers	will	get	configured	to	support	
wildcarding,	in	which	case	the	name	server	will	answer	for	ANY	
paSern	matching	the	wildcard	

•  For	example,	assume	you're	a	marketer,	and	you've	uniquely	
tagged	a	hidden	tracking	URL	in	each	message	you	send.	E.G.,	
xfasd-ttsuoa.campaign7.example.com  
hruak-adhdwr.campaign7.example.com  
[etc]

•  You	want	your	name	server	to	respond	to	each	such	address	
when	resolved.	Using	DNS	wildcarding,	you	could	tell	a	name	
server	to	return	a	response	for	*.campaign7.example.com	

173	

Zone	Transfers	

•  If	you	wanted	to	get	a	copy	of	all	the	records	in	a	zone,	such	as	all	
the	hosts	defined	under	uoregon.edu,	you'd	do	a	"zone	transfer."	
Zone	transfers	can	be	full	(AXFR)	or	incremental	(IXFR).	

•  Because	a	full	lisOng	of	all	hosts	in	a	domain	would	be	hugely	
useful	if	you	were	a	hacker/cracker	planning	an	aSack,	normally	
zone	transfers	are	only	allowed	for	a	small	set	of	explicitly	
authorized	parOes	who	have	a	legiOmate	need	for	such	access.	
(SomeOmes	zone	files	transfers	are	accidentally/unintenOonally	
allowed	as	a	result	of	operator	error/configuraOon	problems,	see	
the	next	slide)	

•  By	the	way,	you	now	also	understand	why	providers	of	passive	
DNS	normally	like	to	carefully	vet	their	users	–	having	access	to	
passive	DNS	is	like	being	able	to	get	copies	of	a	site's	zone	file.	

174	

Example	of	a	Zone	Transfer	Leaking:	.kp	

175	

DNS	Response	Codes	
•  When	a	DNS	query	is	made,	it	may	succeed	or	it	may	fail.	The	

status	code	that's	returned	is	called	as	a	"DNS	response	code."		

•  $ dig google.com  
[...]  
;; ->>HEADER<<- opcode: QUERY, status: NOERROR [etc]  
google.com. 180 IN A 216.58.193.110

•  NOERROR	==	normal	successful	compleOon	status	code	

•  $ dig asasdjasjnasfjnasfnkafs.com  
[...]  
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN [etc]

•  NXDOMAIN	==	domain	does	not	exist	

•  There	are	other	(relaOvely	obscure)	addiOonal	error	codes,	too	
176	

Thanks	For	the	Chance	to	Talk	Today!	
	

Are	There	Any	QuesOons?	
	
	

Please	remember	to	fill	out	your	
session	evaluaOon!	

	
	

THANK	YOU	for	ParAcipaAng	In	
M3AAWG's	Paris	Training	Program	

