
New Crypto 101

Internet2 Technology Exchange
Indianapolis, IN, Oct 30th, 2014

White River Ballroom D, 8:30AM

Joe St Sauver, Ph.D. (joe@stsauver.com)
https://www.stsauver.com/joe/new-crypto-101/

Disclaimer: all opinions strictly my own.

Introduction
•  Recent revelations (such as the Snowden NSA-related

disclosures as well as multiple high profile SSL/TLS
vulnerabilities) have increased the need for all network
engineers and system admins to understand basic
emerging cryptographic best practices.

•  This talk is meant to provide a brief introduction to the
critical bits you need to understand, even if you're not a
"crypto person" and even if you have a million other
things to worry about, too.

•  We also will NOT assume that you're a crypto math geek.

2

If You Do Only ONE Thing

PLEASE check your "secure" web
servers using the free Qualys SSL Tester:

https://www.ssllabs.com/ssltest/

 Note: you probably have MULTIPLE

"secure" servers on your campus, not just
https://www.whatever.edu/

Be sure you check ALL of them. 

3

DON'T LET *THIS* BE YOUR SITE'S REPORT!

4

Some Things To Note About That "F" Report
•  That server's certificate was fine (THAT received a perfect score).

The operator of this server also DID take steps to mitigate the
recent high profile POODLE vulnerability (that's also great).

•  HOWEVER, because they didn't fix all the ADDITIONAL
vulnerabilities associated with their SSL/TLS installation, their
overall cryptographic security was AWFUL – and that's why
they ended up with a big fat "F"

•  Bottom line, that "secure" server is actually highly INSECURE
(and yes, I've reported it to that organization so it can be fixed)

•  You do NOT have to just shrug and accept horrible SSL/TLS
insecurities. You can get secure, and even get a perfect score.

5

The Sort of Report You *DO* Want to See

6

Getting From An "F" to An "A+"
•  Let me emphasize that while we talk about "F" "grades" and "A+"

"grades," the "grades" themselves are NOT the actual objective.
Those "grades" are just a proxy for the actual objective -- having a
cryptographically secure system. The grades just provide an easy
way for us to "keep score" or "measure how we're doing."

•  The process of fixing a cryptographically insecure server isn't
magic. There are a relatively small and straightforward set of
steps that mere mortals can and should take. YOU should take
these steps for all of your secure servers.

•  We're going to go over what's involved, organized around the
areas shown in the Qualys tester. We're also going to cover some
additional cryptographic topics that are new/timely.

7

Part 1. Your Server's Certificate

Certificates Tie an "Identity" to a Key Pair
•  Whenever we talk about web crypto, certificates are the first thing

that always seem to come up.

•  When you set up a secure web server, one of the tasks you'll
perform is creating a public/private key pair. You'll do this as
part of creating a "CSR" or certificate signing request.

•  That public/private key pair handles the technical "heavy lifting"
associated with your web site's crypto.

•  So what role does the certificate serve? Well, your certificate ties
an identity to the corresponding public/private key pair. An
"identity" might be just a domain name, or it might be an actual
organizational name.

9

Please Do NOT Use a Self-Signed Cert
•  To be trusted by common web browsers, your certificate

needs come from a recognized certificate authority (CA).
•  310 universities (and university systems) currently get their

certificates from the InCommon Certificate Service (which resells
Comodo certificates), see http://www.incommon.org/certificates/

•  Others may prefer to just buy certificates "ala carte." For
example, http://www.ssls.com/ currently sells globally-trusted
Comodo "PositiveSSL" certificates for just $4.99/year
(assuming you buy a five year cert).

•  The "A+"-rated server review shown on slide 6 is proof that
you do NOT need to spend a lot of money when buying a
cert... That "A+" report was for a server that was using an
inexpensive $4.99/year cert.

•  Cost is no longer a reasonable justification for using a self-signed
(and globally UNtrusted) certificate on your server!

10

So Why Do Some People Pay More for Certs?
•  If a $4.99/year cert will do the job, why do some people pay a

whole lot more for the same sort of certificate?

•  Well, in some cases, purchasers seem to believe that a more
expensive certificate is somehow "better" than a less expensive
certificate (just like more expensive vodka is somehow "better"
than less expensive vodka :-;)

•  In reality, as long as your certificate chains to a root certificate
trusted by your users' browsers, you're going to be okay.

•  There are some different types of certs, however, so just to
eliminate any confusion, let's talk about those differences briefly.

11

Domain Validated Certs
•  Domain validation (DV) is based around the process of an

applicant demonstrating technical control over a domain.
•  For example, to do DV, you might need to reply to email sent to

an administrative contact address, or demonstrate the ability to
create a specified web page, or show the ability to create a
specified DNS entry – if you can one of those things, CAs believe
you've shown "technical control" over that domain, and thus
should be allowed to get a cert for that domain. For most certs,
that's all that's done. There's no attempt made to verify the
identity of the company that owns the domain. (That's why certs
that only do DV don't show an org's "real name" in the browser)

•  DV, while not perfect, is still important -- it ensures that an
applicant that doesn't technically control a particular domain can't
get a cert that they shouldn't be getting (Random people shouldn't
be able to get a cert for google.com, whitehouse.gov, etc.!)

12

Organizational Validation
•  All InCommon Certificate Program certs are protected with

domain validation, but that's only PART of a more complex
process of doing organizational validation.

•  Organizational validation requires additional steps, including
verification of the domain's whois registrant information, and
confirmation that a requester is authorized to request certs for
his or her organization.

•  This additional processing typically requires manual
intervention and review, and that's why you will be made to
(at least temporarily) remove any privacy or proxy registration
protections you may have in place while organizational
ownership of the domain is confirmed.

13

Extended Validation Certs
•  Going beyond organizational validation certs, there's an even

cooler option: "extended validation" ("green bar") certificates.
•  Extended validation certificates are normally quite expensive

(some certificate authorities charge as much as ~$1,499 for just
one of them), but they're bundled at no additional charge for
InCommon Certificate Service subscribers – all you "pay" is
the time associated with completing the required extended
validation paperwork.

•  Extended validation certs aren't cryptographically "stronger" than
a regular domain validated cert, but because they involve much
tighter identity proofing, they're rarely seen associated with abuse.
Knowledgeable users may thus be more inclined to trust your site
if it has gone through the trouble to get an EV ("green bar") cert.

•  Downsides to EV certs (besides the paperwork)? EV certs have a
max lifetime of two years, and you can't get wildcard EV certs. 14

[Speaking of Wildcard Certs: Please Avoid Them!]
•  If you hate screwing around ordering certs, the thought of getting

one "wildcard" cert that you could then use for ALL your
domain's systems (e.g., *.example.edu) might be superficially
attractive (and relatively cheap). Resist the temptation!

•  Wildcard certs have a tendency to be used on both high security
systems (like your school's ERP system) as well as less critical
systems (like the local student bridge club's web server), ugh.

•  If you have a wildcard cert installed on hundreds of campus
servers and any ONE of those systems gets breached, you're
looking at a fire drill: you'll need to generate a new public/private
key pair and then get your new certificate installed on ALL of
those hundreds of systems, rather than just fixing one system.

•  If you just need a single cert to work for a defined set of hosts, a
multi domain cert (for up to 100 names) is a better alternative.

15

Part 2. "Advanced" Cert Topics

(a) Support for Raw IPv6 Addresses in Certs?
•  It is currently possible to get SSL/TLS certificates for raw IPv4

addresses from most Certificate Authorities. However:

-- You often cannot request certs for BLOCKS of IP addresses
 (e.g., you can't specify an arbitrary CIDR block, or even just
 a starting and ending IP address). This should be fixed.

-- You also CAN'T currently get SSL/TLS certificates for raw
 IPv6 addresses (even for single IPv6 addresses).
 Given that we're rapidly exhausting IPv4 address space,
 shouldn't we be working on this?

 And ESPECIALLY in IPv6 land, I REALLY want to be able to
 specify network blocks (e.g., IPv6 /64's) rather than just one
 potentially LONG raw IPv6 address at a time!

17

(b) Internal Domain Names/Private Address Space
•  Some sites make up their own domain names (often things like

"dot local" or "dot intranet") for use with internal sensitive
systems. These systems also often live in non-routable RFC1918
address space. These internal systems are intentionally NOT
meant to be globally accessible.

•  Nonetheless, users often are interested in globally trusted certs
that include those names (or those non-routable IP addresses)

•  Problem: you and I may BOTH have servers with the same made-
up internal names (or the same non-routable IP addresses) even
though your system isn't the same as mine.

•  If a certificate authority issues a cert to either of us, that cert could
potentially be used beyond what's intended. The community is
uncomfortable with that, and as a result, globally trusted certs for
internal domain names are being phased out as a policy matter.

18

CAB Forum Policy on Internal Names
•  Globally trusted certs for internal domain names and/or

non-routable address space may NOT be issued with
expiration dates later than November 1st, 2015.
See https://cabforum.org/internal-names/

•  Implicitly, if you're getting a one year cert for internal domains
today, you're basically bumping into that expiration (or nearly
enough)

•  Either plan to rename/renumber those internal systems into name
space or address space you explicitly control,

OR replace globally trusted certs with locally issued/locally
trusted certs.

19

Replace .local with .local.<yourdomain>.edu
•  If you replace your use of a locally self-assigned TLD with a

subdomain under your top level domain, you can continue to
get and use globally trusted certs

•  The trick then becomes ensuring that remote sites can't resolve
those names, nor access the corresponding internal-only network
segments. (This should not be much of a challenge for most DNS
teams, assuming local recursive resolvers and authoritative name
servers are properly architectected)

•  Do not attempt to use a registered but totally offline domain –
you still need to be able to DCV the domain, either via email,
web or DNS

20

Replace RFC 1918 Address Space with Real IPs
•  Similarly, if you currently use RFC 1918 address space for

globally trusted certs, you should be planning to replace those
RFC 1918 addresses with real IP addresses your school explicitly
controls.

•  Obviously you or your network engineers should take appropriate
steps to ensure that those IP addresses aren't accessible from off
campus, nor to other unauthorized users.

21

PAY ATTENTION: Potential Side Effect of
Deploying Locally Issued Certs for Intranets

•  If you decide to create your own local certificate authority, and
force local users to accept your local self-signed root cert, you've
just created an environment with a very high potential for misuse.

•  Specifically, if you force your users your local root, you could
then issue a locally-trusted cert for * (e.g., match all sites) and
then potentially Man In The Middle *ALL* local traffic via a
web gateway – yowza, Batman!

•  You should be highly sensitive to the possibility of this occuring.
At least some security officers totally freak out at the thought that
they currently have zero visibility into user SSL/TLS traffic
("Malware! Phishing! Other bad content! Data exfiltration! And
we can't see it or manage it on the network if it's encrypted!").

•  The institutional risk implications associated with MITM'ing all
site SSL/TLS traffic are HUGE. Do NOT do this. 22

(c) CRITICAL: SHA-1 Certificate Signatures
•  When a certificate authority issues a certificate, they "digitally

sign it" by computing a hash. Digitally signing a certificate
protects the certificate against tampering (if anything gets altered,
the digital signature becomes invalid).

•  Even as late as February 2014, virtually all (literally 98+% of all
certificates) were still signed with a SHA-1 signature.* The
problem? In January 2011, NIST 800-131A** stated that "SHA-1
shall not be used for digital signatures after December 31, 2013."

* NIST continues using SHA-1 algorithm after banning it, http://news.netcraft.com/archives/
2014/02/04/nist-continues-using-sha-1-algorithm-after-banning-it.html
** Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key
Lengths, January 2011, http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

23

Microsoft and the SHA-1  SHA-2 Migration
•  What was the "holdup" moving to SHA-2? Well, a primary gating

factor was that some versions of Windows XP didn't support
SHA-2. This problem (more or less*) went away when Microsoft
declared Windows XP end-of-support on April 8th, 2014.**

•  Shortly thereafter, on November 12th, 2013, Microsoft announced
its "SHA1 Deprecation Policy." That policy required CAs
participating in the Microsoft Root Certificate Program (e.g.,
effectively all major globally-trusted Certificate Authorities) to
stop issuing SHA1-signed certificates by January 1st, 2016.***
That date was generally believed to be pretty reasonable/doable.

* Support for Windows XP is over, but China still has 200 million PCs using it,
http://www.techinasia.com/windows-xp-now-dead-but-200-million-machines-in-china-still-using-it/
** Support for Windows XP has ended,
http://www.microsoft.com/en-us/windows/enterprise/end-of-support.aspx
*** SHA1 Deprecation Policy,
http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx 24

Google Chrome, On The Other Hand, Announced
A Much More Aggressive SHA-1 Time Schedule
•  The Google Chrome people, makers of the world's most popular

browser, announced that as of Chrome version 39 (scheduled
for release in NOVEMBER 2014), any https sites which have
certs using SHA-1 AND which expire after January 1st, 2017
will no longer be shown as fully trustworthy in the Chrome
browser's user interface.* Obviously this would include most
recently-issued three-year SHA-1 certificates.

•  In general, this means that most sites will want to replace
their SHA-1 certs with new SHA-2 certs as soon as possible.
Most trusted certificate sources, including the InCommon
Certificate Program, now have SHA-2 certs available.

•  RECOMMENDATION: START USING SHA-2 CERTS!

* http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html

25

Caveats Associated With Moving to SHA-2
•  The decision to move to SHA-2 is not without potential

"gotchas." In particular, some older systems or software may
not be fully SHA-2 compatible. My favorite page for SHA-2
compatibility information is probably GlobalSign's "SHA-256
Compatibility," https://support.globalsign.com/customer/portal/
articles/1499561-sha-256-compatibility

•  If you are an InCommon Certificate Subscriber and have a
system that isn't SHA-2 compatible: the InCommon Certificate
Service is currently still allowing its subscribers to get a one year
SHA-1 certificate in addition to the new now-industry-standard
SHA-2 1, 2 or 3 year certificates. If you need to use one of those
one year SHA-1 cert because of SHA-2 compatibility issues,
please use your year's "grace period" to figure out how you're
going to handle your SHA-2 incompatible system. ALL OTHER
SERVERS SHOULD NOW BE USING SHA-2 CERTS.

26

[Aside: SHA-256, SHA-384, and SHA-512]
•  SHA-2 is not just one hash function, it's actually a family of

hashes, including SHA-256, SHA-384, and SHA-512.
While you might expect implementations to support all members
of the SHA-2 hash family if they support any of them, support for
SHA-512 (at least when used with TLS 1.2) is incomplete.

•  InCommon discovered this with Comodo based on user reports
after we deployed a SHA-512 intermediate cert (e.g., the "glue"
between the trusted root cert and the end-entity cert). That
SHA-512 intermediate worked fine for most modern systems and
browsers, but had problems with some others, even with patches
applied (e.g., see "SHA512 is disabled in Windows when you use
TLS 1.2," http://support.microsoft.com/kb/2973337)

•  As a result, InCommon worked with Comodo to drop our SHA-2
intermediate cert back to SHA-384. That SHA-384 intermediate is
now working as expected on all SHA-2 capable systems.

27

Sample Qualys SSL Client Check

Discussion of the ambiguity around the meaning of the signature algorithm field
can be seen in this discussion thread:

http://www.ietf.org/mail-archive/web/tls/current/msg13599.html

28

(d) Strength of Your Public Key Crypto

•  Remember how we mentioned that you create a public/private
key pair when you create a certificate signing request?

•  Those keys are virtually always RSA-2048 bit keys at this point.

•  The strength of those keys plays a major role in determining the
strength of your SSL/TLS crypto overall.

•  Show how did you pick RSA-2048? In most cases, you're using
RSA-2048 because... well, because everyone else is, too.

•  That doesn't mean it's the right choice. Let's assume that we want
all parts of our crypto to be of roughly the same strength, instead.

29

If We Need SHA-2 For Our Hashes...

•  When you replace your SHA-1 cert with a stronger SHA-2 cert,
this may also be a good time to think about whether your want to
stay with RSA-2048, or if you want to start using RSA-4096 to
keep your asymmetric crypto at an "equivalent level of strength."

30

Roughly 3% of Site Are ALREADY
Using RSA-4096 Bit Keys...

•  Most SSL/TLS server certs currently use
RSA-2048 (see the "SSLPulse" results
to the right). RSA-2048 appears to be
okay for now, however some sites
ARE beginning to migrate to RSA-4096.
Many CAs, including Comodo, will
allow you to submit a CSR for either
RSA-2048 or RSA-4096 (just use the
appropriate command line flag when
generating your CSR with OpenSSL).

•  Note: if you do elect to just stay with RSA-2048, you will NOT
be able to get a "perfect score" from the Qualys SSL Tester.

•  Please also note: using RSA-4096 will likely reduce the capacity
of your server; be careful if you're running on the "ragged edge."

31

RSA-2048 vs RSA-4096 Relative Performance
•  For one sample system:

$ openssl speed rsa2048 rsa4096
[snip]
 sign verify sign/s verify/s
rsa 2048 bits 0.002786s 0.000089s 358.9 11218.8
rsa 4096 bits 0.020470s 0.000329s 48.9 3041.2

•  Doing the math:

-- RSA-4096 signing takes roughly 7.3X as long as RSA-2048
-- RSA-4096 verifying takes roughly 3.7X as long as RSA-2048

•  Your mileage WILL vary. Test your system to avoid surprises.
32

(e) Trust Chains: Mind Your Intermediates
•  The old days (when trusted root certs directly signed end-entity

certs) are long gone. These days, trusted root certs are used to sign
an intermediate cert, and that intermediate cert is then used to
sign the end-entity cert used by your servers. (Sometimes there
may even be a 2nd or 3rd intermediate cert in that trust chain)

•  One sometimes overlooked fact is that YOUR SERVER needs to
provide any required intermediate certs as well as its own server
cert. (The root cert's already present in the browser trust anchors,
so you don't need to provide that) While you might expect the
browser to be able to "automagically" find and download any
required (but missing) intermediates, it just doesn't work that way.

•  Therefore, as part of installing your certs, be SURE you also
install the required intermediate(s), and in the right order
(if you're using more than one intermediate cert). [Consult your
server's documentation for the correct intermediate ordering]

33

[Can There Be Multiple Trust Paths? Yes]
•  At least in the case of InCommon's SHA-2 certs, there are

actually two paths to a trusted root that are provided.
•  The short path is all that's needed for browsers that already trust

the USERTrust RSA Certification Authority [SHA-2] trust anchor.
The extended path (with cross-signing to Comodo's AddTrust
External CA Root) is a temporary solution for other browsers.

•  Short path:
 USERTrust RSA Certification Authority [SHA-2]
 InCommon RSA Server CA [SHA-2]
 End-Entity Certificate (your server's cert) [SHA-2]

•  Extended path:
AddTrust External CA Root [SHA-1]
 USERTrust RSA Certification Authority [SHA-2]
 InCommon RSA Server CA [SHA-2]
 End-Entity Certificate (your server's cert) [SHA-2] 34

"But Joe! There's A SHA-1 Root In That Chain!"
•  Some users carefully check the certificate chain used by their

certificates. If so, they may noticed that while their end entity
cert uses SHA-2, and their intermediate cert(s) use SHA-2,
those certs actually chain back to a SHA-1 trusted root in some
cases. For example, that's the case for the AddTrust External CA
Root in the case just discussed.

•  Because of how root certs come to be trusted, this is not an
issue.

•  As browser vendors update their trust anchors, the need to rely on
legacy SHA-1 signed root certs will go away (this is expected to
be completed in Comodo's case sometime after the first of the
year).

35

Finally, It SHOULD Go Without Saying, But...
•  The name on the cert MUST MATCH the name of the server it's

used on

•  The cert must NOT be expired (and shouldn't be used BEFORE
it's valid, either!)

•  The cert must NOT be revoked, either.

•  If any of the preceding conditions aren't met, your cert won't be
trusted.

•  All that said, enough about certs! Let's move on to talk about the
SSL/TLS protocols themselves.

36

Part 3. SSL/TLS Protocols

(a) SSL/TLS and Compatibility
•  SSL/TLS has evolved over the years, typically in response to

vulnerabilities discovered in whatever was the then-current
version of those protocols.

•  Some web servers support "all" versions of SSL/TLS for
"compatibility reasons." PLEASE DON'T.

•  SSLv2 is ancient and grossly insecure and MUST NOT be used
any more.

•  SSLv3, the focus of the recent POODLE vulnerability, is now
roughly 16 years old and ALSO MUST NOT be used any more.

•  Strive to ALSO avoid offering TLSv1.1 (or TLSv1.0) if at all
possible.

•  If you're running a current version of your server's crypto
libraries, and if your users employ a modern web browser,
USE TLS 1.2

38

An Example Of A Disappointing
Qualys SSL Server TLS Protocol Report

39

Remember:

If you support SSLv2 (ancient and grossly insecure!),
you'll get an "F" (and you deserve it!)

If you support SSLv3, for now, you won't get better
than a "C" (and you WILL be vulnerable, so don't do SSLv3)

If you don't support TLSv1.2, you won't get better than
a "B" on the Qualys Tester.

Tweaking Your Configuration to Use TLSv1.2
•  This process is not magic. Ensure you're running the latest

version of your web server's software. Again, as of the time
this was written, nginx was on mainline release 1.7.6, see
http://nginx.org/en/download.html (Yes, at this point I am now
recommending nginx over Apache and (other server options) due
to nginx's improved support for strong crypto/advanced protocols)

•  Ensure you're running the latest version of your crypto
libraries. At the time this was written, OpenSSL had released
1.0.1j on October 15th, 2014, see https://www.openssl.org/source/

•  Consult your web server software's configuration guide for
information on how to set the version(s) of SSL and TLS you
want to use. Typically this is just one line in the config file. For
example in nginx.conf, you simply use the command:

ssl_protocols TLSv1.2;

40

"Joe! What if I'm using MS IIS?"

41

Do I Really Need To Run The Latest Versions?
•  YES! YOU REALLY, REALLY DO.

•  While things like POODLE get a lot of "air play," there are many
OTHER web security and crypto security issues that are quietly
handled in updates. If you're NOT running the latest versions,
you're likely vulnerable to one or more of those security issues.

•  The easiest way to avoid that is by running the latest version
of your cryptographic libraries and the latest version of your
web server's software.

•  That said, I know this discussion triggers the "distro problem."
The "distro problem" is probably the leading reason why people
don't run "safe and sane" SSL/TLS configurations.

42

What Is The "Distro Problem?"
•  Many sites have elected to run a standardized "enterprise grade"

distribution emphasizing stability above everything else.
•  These enterprise grade distributions do NOT chase the latest

version of every package, they typically only back port and merge
major bug fixes and security-critical patches into their updates,
with everything else waiting for the next major release.

•  Mind bogglingly, crypto updates (or generic web server software
updates) may not always be considered "security critical."

•  Site may not even run the latest version, or even the latest update
for whatever version they are using. Local policy may forbid sys
admins from manually upgrading packages outside the
distribution framework.

•  Recommendation: run the latest version of the latest
distribution, & encourage your vendor to at least keep the crypto
and web server software in those builds completely current! 43

Not Convinced That Problems Exist In Earlier
Versions of Crypto and Web Server Software?
•  Check out the list of vulnerabilities for OpenSSL at

https://www.openssl.org/news/vulnerabilities.html

•  Check out the nginx security advisories at
http://nginx.org/en/security_advisories.html

•  Check out the Apache 2.4 httpd security advisories at
http://httpd.apache.org/security/vulnerabilities_24.html

•  Check out the Apache 2.2 httpd security advisories at
http://httpd.apache.org/security/vulnerabilities_22.html

•  Etc., etc., etc! ALWAYS RUN THE LATEST VERSIONS!
44

(b) HTTP Strict Transport Security

•  Historically, only "sensitive" information was protected with
SSL/TLS security, everything else was transmitted in plain text
via regular HTTP.

•  These days, now that we have a much better basis for assessing
the extent to which our traffic is subject to pervasive monitoring,
we know that we should really be encrypting ALL traffic, whether
sensitive or seemingly routine.

•  The HTTP Strict Transport Security policy mechanism essentially
says, "For this domain, ALL traffic should be exchanged over an
encrypted channel."

•  As part of this process, webmasters will normally rewrite requests
made over insecure (regular) http, forcing them to go over https

•  This whole process is relatively straightforward in modern web
servers (such as nginx)

45

Configuring Strict Transport Security in nginx
server {
 listen 80;

 rewrite ^(.*) https://$host$request_uri permanent;
 }
server {
 server_name www.example.com;
 listen 443 ssl;
 add_header
 Strict-Transport-Security "max-age=31536000;
 includeSubdomains";
 }

CAUTION: After a browser sees that Strict-Transport-Security
header, that browser will ONLY connect to that site via HTTPS for
the specified # of seconds (31,536,000 seconds=roughly 1 year)

46

WITHOUT HTTP Strict Transport Security...

•  If you don't use HTTP Strict Transport Security, it's extremely
easy to end up with HTTPS "Mixed Content" warnings,
e.g., a page that delivers a mixture of content that is – and ISN'T –
protected by SSL/TLS. This is a VERY common problem.

•  Ivan Ristic of Qualys states that "We tend to talk a lot about other
aspects of SSL/TLS, but mixed content is arguably the easiest
way to completely mess up your web site encryption." (see
https://community.qualys.com/blogs/securitylabs/2014/03/19/
https-mixed-content-still-the-easiest-way-to-break-ssl)

•  [And if you DON'T do HTTP Strict Transport Security, you'll also
never get that A+ you want from Qualys.]

47

Joe! HTTP Strict Transport Sounds "Scary"...

•  It really shouldn't. For example, if you follow the IETF work
around HTTP/2, the next major version of HTTP, you will see
that major browser vendors are indicating that they will ONLY
support HTTP/2 over TLS secured connections.

•  You might as well get used to working in what amounts to an
HTTP strict transport security-equivalent world now, because the
next version of HTTP will be operating in that environment by
default.

•  [In the interest of fairness, if you'd like to read the argument FOR
allowing a NON-encrypted HTTP/2 mode for use with proxies,
see https://github.com/http2/http2-spec/wiki/Proxy-User-Stories]

48

(c) Optional (But Worth Considering): SPDY
•  Speaking of HTTP/2, the next version of HTTP, if you believe

that ever-trustworthy oracle, Wikipedia, "is based on SPDY."
(see http://en.wikipedia.org/wiki/HTTP/2 and
http://en.wikipedia.org/wiki/SPDY)

•  SPDY is a Google-originated effort to reduce web page load times
while also improving web security. It is currently still somewhat
experimental, but the latest version of most browsers support it.

•  If you want to try it on your web site, you'll need to be running a
SPDY-capable version of your crypto libraries, such as OpenSSL
1.01j, and a SPDY-capable web server, such as nginx 1.7.6.

•  If building nginx from source, be sure to configure with
--with-http_spdy_module

•  In your nginx config file, specify spdy as an option to the listen
command: listen 443 ssl spdy;

49

How Much SPDY'er is SPDY?

50

Source: http://www.chromium.org/spdy/spdy-whitepaper

(d) FIPS Ready
•  One of the things you'll see in the SSL Labs report is a statement

"FIPS Ready." Sometimes folks wonder what that involves. If so,
check out:

https://github.com/ssllabs/research/wiki/FIPS-Requirements

•  Short form version:

-- Trusted cert
-- NO SSL v2 and NO SSL v3
-- Strong private key (4096 bit RSA will be fine for now, if you
 followed that earlier recommendation)
-- Strong cipher suite selection (the recommendations in this talk
 should leave you in great shape here, too)

51

(e) PCI Compliant
•  Similarly, there's also a "PCI Compliant" line. To understand

what's involved on that one, check out:

https://github.com/ssllabs/research/wiki/PCI-SSL-Requirements

•  If you are in good shape for the "FIPS Ready" item, you'll also
have most of this one covered, but I'd also particularly draw your
attention to the following additional item (among others):

-- DH parameters 1024+ bits

Again, if you're following the recommendations from later in this
talk, you should end up with a PCI compliant server.

52

Part 4. Key Exchange

(a) The Two Jobs of the Key Exchange Process
•  Job one: am I talking to whom I THINK I'm talking? (e.g., am I

protected against MITM?) Remember that public-private key
pair you created when you requested your certificate? This is
where that public-private key pair comes into play.

•  Job two: creating a safe channel over which symmetric keys

can be agreed for use in encrypting the bulk of the session's
traffic. The RSA public-private key pair CAN be used for this,
too, but if you DO use it for this function, the worrying scenario
then becomes:
-- Adversary hoovers up all your encrypted traffic, and saves it
-- Adversary somehow obtains access to your private key (e.g.,
 via Heartbleed or maybe an untrustworthy privileged user)
-- Adversary then decrypts ALL your captured traffic (much sad)

54

Ephemeral Key Exchange to the Rescue!
•  To avoid the hoover-and-eventually-

decrypt scenario, you should use an
ephemeral key exchange protocol:

 Diffie Hellman Ephemeral, or
 Elliptic Curve Diffie Hellman
 Ephemeral

Those key exchange protocols
CANNOT be retrospectively
exploited. We'll show how to configure nginx for those in the next
section of this talk.

•  For now, let's talk about how to ensure we use strong Diffie
Hellman parameters for the key exchange. 55

(b) Generating Stronger DH Parameters
•  DHE and ECDHE default parameters are often small (1024 bit).

•  Fortunately, you can readily generate an configure stronger
parameters using OpenSSL:

cd /etc/ssl/certs
openssl dhparam -out dhparam.pem 4096

NOTE: This will take a LONG time (hours in some cases), but
just set it up to generate and then go work on something else.

•  Once that file's been created, add the following line to nginx.conf:

ssl_dhparam /etc/ssl/certs/dhparam.pem;

56

(c) Key Exchange Badness That Must Also
Be Avoided: ANONYMOUS Diffie Hellman

•  Don't use anonymous cipher suites. ANONYMOUS Diffie
Hellman is NOT the same as EPHEMERAL Diffie Hellman!

•  Anonymous Diffie Hellman doesn't make any attempt to verify
the identity of the site to which you connect, allowing for easy
Man In the Middle Attacks. ADH cipher suites include:

$ openssl ciphers ADH
ADH-AES256-GCM-SHA384:ADH-AES256-SHA256:
ADH-AES256-SHA:ADH-CAMELLIA256-SHA:
ADH-DES-CBC3-SHA:ADH-AES128-GCM-SHA256:
ADH-AES128-SHA256:ADH-AES128-SHA:
ADH-SEED-SHA:ADHCAMELLIA128-SHA:
ADH-RC4-MD5:ADH-DES-CBCSHA:
EXP-ADH-DES-CBC-SHA:EXP-ADH-RC4-MD5

57

Part 4. Cipher Suite Selection

(a) Choice of Ciphers
•  We're closing on the last bits you need to know in order to secure

your sever and get a good evaluation from the Qualys tester.

•  The last thing we need to talk about is our choice of symmetric
ciphers, and how strong they need to be.

•  If you ONLY need to support modern browsers, and you've
configured your server as previously described, the
recommendation is simple...

59

Simple Recommendation: Use AES-256

•  AES-256 is generally agreed to be a very strong symmetric
cipher.

•  If the clients accessing your site support it (and all modern
browsers will), and your server has the horsepower to handle the
load (most normally will), it is your best option.

•  If your server CANNOT handle the load, you can safely drop
back to AES-128 (in fact, some authorities will out-and-out
recommend AES-128 instead of AES-256, but I'd prefer to see
you have additional cryptographic margin "just in case")

60

Suggested nginx.conf Cipher Suite Configuration
ssl_ciphers AES256+EECDH:AES256+EDH:!aNULL:!eNULL:
!LOW:!3DES:!MD5:!EXP:!PSK:!DSS:!RC4:!SEED;

ssl_prefer_server_ciphers on;

ssl_ecdh_curve secp384r1;

61

How That "Looks" For Various Selected Browsers

If you configure that string and then test your site with the Qualys
SSL Server tester, it shows the resulting cipher suite that gets
negotiated. Popular browsers look like:

Chrome 37 / OS X R TLS 1.2 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS 256

Firefox 32 / OS X R TLS 1.2 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS 256

IE 11 / Win 8.1 R TLS 1.2 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS 256

Safari 7 / OS X 10.9 R TLS 1.2 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS 256

NOTE: If you care about non-current browsers or out-of-date
operating systems, the cipher suite I suggested will likely be TOO
RESTRICTIVE, and it will be impossible for the user's browser
and your server to negotiate a mutually agreeable cipher.

62

If You're Using Java, You May Have To Say
"Captain May I?" To Get Access to AES-256

63

(b) Alternative Cipher Suite Recommendations
•  If my preferred cipher suite specification proves to be just too

intolerably stringent (it really SHOULDN'T BE), you may want
to use one of the alternative cipher suite specifications from:

-- https://bettercrypto.org/static/applied-crypto-hardening.pdf
-- https://www.ssllabs.com/projects/best-practices/
-- https://wiki.mozilla.org/Security/Server_Side_TLS

•  In a nutshell, the less-rigorous option(s) will typically
involve enabling AES-128 (if some countries are okay with
AES-128 but not AES-256, that should tell you something).

It will ALSO typically involve permitting TLS 1.0 (which is
DEFINITELY NOT GOOD).

64

(c) Also, Do NOT Use RC4 Ciphers
•  At the time of an earlier SSL/TLS attack (the BEAST

vulnerability), RC4 (the only stream cipher that most SSL/TLS
servers supported) became popular as a quick fix for that bug.

•  We now know that RC4 is NOT a safe option (see for example
http://www.isg.rhul.ac.uk/tls/).

•  We recommend that you DISABLE RC4, as does Microsoft
("Security Advisory 2868725: Recommendation to disable RC4,"
http://blogs.technet.com/b/srd/archive/2013/11/12/security-
advisory-2868725-recommendation-to-disable-rc4.aspx)

•  See also the IETF Draft "Prohibiting RC4 Cipher Suites,"
https://tools.ietf.org/html/draft-ietf-tls-prohibiting-rc4-01

65

Nice Summary of RC4 (vs. TLS 1.2) Security

66
Source: http://en.wikipedia.org/wiki/Transport_Layer_Security

(d) DO NOT USE the NULL "Cipher" Suites

•  You should also not use the NULL cipher suites because that
doesn't involve doing ANY encryption! Doh!

$ openssl ciphers NULL
ECDHE-RSA-NULL-SHA:ECDHE-ECDSA-NULL-SHA:
AECDH-NULL-SHA:ECDH-RSA-NULL-SHA:
ECDHE-CDSA-NULL-SHA:NULL-SHA256:
NULL-SHA:NULL-MD5

Let me emphasive:

Do NOT make a mistake and accidental end up using the
NULL cipher suites

67

Other Cipher Suites You Should Also NOT Use
•  DO NOT USE "Export" or "Low" grade (weak) ciphers...

$ openssl ciphers EXPORT,LOW

•  DO NOT USE "DES" ciphers
$ openssl ciphers DES

•  DO NOT USE "MD5" (this includes ALL SSLv2 ciphers)...
$ openssl ciphers MD5

•  The above are ALL weak!

•  Speaking of wanting strong ciphers, is there anything stronger
than RSA-4096?

68

Part 5. Elliptic Curve Crypto (ECC)

RSA Public Key Crypto vs. ECC
•  Traditionally, RSA public key crypto has been based around our

(limited) ability to quickly factor large integers. For those who
may have forgotten factoring from high school or grade school,
factoring is the ability to find numbers that divide into an integer
evenly. For example, 3 and 5 are factors of 15. While that's easy,
factoring a 2048 or 4096 bit-long integer is just a *bit* more
difficult.

•  About ten years ago, the community began to work on moving to
elliptic curve cryptography, which relies on the difficulty of
solving the discrete logarithm problem. You likely didn't study the
discrete logarithm problem in grade school or high school. 

•  The best (relatively) easy-to-understand introduction to elliptic
curves that I've seen is probably this one:
http://arstechnica.com/security/2013/10/a-relatively-easy-to-
understand-primer-on-elliptic-curve-cryptography/

70

Do We "Need" Elliptic Curve Crypto Today?
•  Right now, we might not. RSA appears to be working okay.
•  That said, ECC is also generally able to deliver stronger crypto for

a given size key, while being less taxing on CPUs than RSA, so if
you want keys stronger than RSA-4096, ECC's basically your only
realistic/practical option today.

•  You might also want to be ready with alternative crypto system
IF there's a breakthrough in factoring long integers (e.g., perhaps
through use of quantum computing and Shor's Algorithm see
http://en.wikipedia.org/wiki/Shor%27s_algorithm). The
hypothetical fall of RSA, etc., is what Tom Ritter and his co-
authors refer to as the "cryptopocalypse", see:
https://isecpartners.com/media/105564/
ritter_samuel_stamos_bh_2013_cryptopocalypse.pdf)

•  If you're interested in post-quantum crypto, see also
http://en.wikipedia.org/wiki/Post-quantum_cryptography

71

RSA vs. Elliptic Curve Strength Equivalence

72

http://www.nsa.gov/business/programs/elliptic_curve.shtml

National Security Crypto and ECC
•  Because the government routinely relies on "commercial off the

shelf" (COTS) technology for its own applications, the government
needs to provide guidance about how to safely use publicly-
available crypto to secure sensitive information, for classified
information up to and including for TOP SECRET information.

•  Some of those recommendations involve use of public standards
(rather than classified government cryptographic methods).

•  See the excerpt from CNSSP No. 15 Annex B on the next slide,
describing use of ECC for up to TOP SECRET information.

73

74

ECC Trusted Roots?

•  In order to be able to do Suite B-recommended ECC crypto, you
need a cert that chains to an ECC root.

•  Currently there are just seven (7) ECC trusted roots in the Firefox
trust anchor (see http://www.mozilla.org/en-US/about/governance/
policies/security-group/certs/included/):

Comodo ECC Certification Authority
DigiCert Assured ID Root G3
DigiCert Global Root G3
GeoTrust Primary Certification Authority – G2
Thawte Primary Root CA - G2
Trend Micro Affirm Trust Premium ECC
VeriSign Class 3 Public PCA - G4

75

Choice of Curves
•  When it comes to working with elliptic curve cryptography, note

that ECC is actually a family of methods that rely on different
elliptic curves.

•  You (or, more accurately, the coders of the crypto libraries you use)
need to decide on the specific elliptic curves you're going to use.

•  NIST has recommended a set of curves. SO HAVE OTHERS.
If you're considering doing ECC (and you should be), I'd urge
you to review http://safecurves.cr.yp.to/ Not all ECC curves are
equally good.

•  IMPORTANT NOTE: if you DON'T allow the NIST curves,
you may not have a solution that will work for Windows users.

76

http://safecurves.cr.yp.to/

77

"What Does All The Stuff In That Table Mean?"
•  Read this paper:

"Security Dangers of the NIST Curves"
http://cr.yp.to/talks/2013.05.31/slides-dan+tanja-20130531-4x3.pdf

78

Some Pretty Smart Folks Use Alternative Curves
•  For example the team at Silent Circle have announced that they are

going to non-NIST curves from Daniel Bernstein & Tanja Lange:
https://blog.silentcircle.com/nncs/
https://blog.silentcircle.com/this-one-goes-to-414/

•  Google Chrome is also moving to crypto from DJ Bernstein, see
http://googleonlinesecurity.blogspot.com/2014/04/speeding-up-and-
strengthening-https.html plus
http://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-02 and
http://tools.ietf.org/html/draft-mavrogiannopoulos-chacha-tls-02

•  Will more cryptographic products and libraries move to support
non-NIST elliptic curves from Bernstein and Lange? I think so.

79

Part 6. Certificates OTHER THAN
Traditional SSL/TLS Certs For The Web

InCommon Client Certs
•  InCommon Client Certs now are available in SHA-2 format, too.

•  If you're an InCommon Certificate Service subscriber and you'd
like to begin using SHA-2 client certs at your site, please send in
the client cert request form that's at: https://spaces.internet2.edu/
display/InCCollaborate/Client+Certificate+Request+Form

•  Another item "for the record:" InCommon is no longer offering

PKI hard tokens or PKI smart cards for use with client certificates
(but you can still obtain PKI hard tokens or PKI smart cards from
the usual major online computer and networking gear sources if
you need/want them)

81

Code Signing Certs: Now Using SHA-2 As Well
•  Code signing certs are used by programmers to cryptographically

sign apps. [Code signing certs are bundled at no extra charge with
the InCommon Certificate Service]

•  Historically, code signing certs used SHA-1 for signatures.
Now, just like other types of certs, code signing certs are
migrating to SHA-2.

•  There are some excellent campus pages available around code
signing; see for example:

"Digital Certificate - Use a Code Signing Certificate"
https://answers.uchicago.edu/page.php?id=19495

82

IGTF Server Certs
•  These are another type of specialized certificates that meet the

unique requirements of the Interoperable Global Trust Federation
"Grid" community. Note: if you're NOT trying to set up a server
to use with the IGTF, this is NOT the sort of SSL/TLS certificate
you want.

•  For more information, see:

-- http://www.igtf.net/

-- http://www.incommon.org/certificates/igtf/index.html

-- https://www.xsede.org/security/certificates

83

Intel AMT Device Management Certificates
•  This is a new type of certificate available at no additional charge

from Comodo/the InCommon Certificate Service. Quoting from:
en.wikipedia.org/wiki/Intel_Active_Management_Technology
 "Intel AMT is hardware and firmware technology that builds
 certain functionality into business PCs in order to monitor,
 maintain, update, upgrade, and repair PCs. Intel AMT is part
 of the Intel Management Engine, which is built into PCs with
 Intel vPro technology. Intel AMT is designed into a
 secondary (service) processor located on the motherboard."

•  See also https://software.intel.com/sites/manageability/
AMT_Implementation_and_Reference_Guide/default.htm?
turl=WordDocuments%2Fintelamtandsecurityconsiderations1.htm
 "Remote platform management applications can access Intel
 AMT securely, even when the platform is turned off, as long
 as the platform is connected to line power and to a network." 84

Opportunistic Encryption of SMTP Traffic
•  When thinking about uses for SSL/TLS certificates, don't

overlook how they can help to secure non-web services. For
example, SSL/TLS can be used to secure POP and IMAP access
to user email via clients such as Thunderbird or Outlook.

•  SSL/TLS can also be used to secure mail flows between mail
transfer agents (MTAs), such as Postfix, Exim, etc.

•  Recently major mail providers have made a major effort to get a
majority of their SMTP traffic protected with opportunistic
encryption. See the Gmail email transparency report on the next
page...

85

86

87

Certs on Wireless Access Point
•  Another place where certs sometimes turn up is on wireless

access points. This is an important use (you don't want spoofed
wireless auth, for example), but can pose some challenges,
chicken-and-egg style.

•  Specifically, before we can trust a cert presented by an server, we
need to make sure it hasn't been revoked. This is normally done
by using the Online Certificate Status Protocol (OCSP), or by
downloading and checking a CRL (Certificate Revocation List).

•  However, recall that on a wireless access point, until you accept
the cert you're offered, you won't be online, so you can't check
OCSP or CRLs, so... Beware this circularity.

•  Ideally, configure your wireless access point to allow OCSP or
CRL traffic even for UNAUTHENTICATED wireless users so
proper certificate revocation checking can happen.

88

Finishing Up My Work With the Cert Service
•  Finally, I also wanted to make sure that folks were aware that my

last day managing the InCommon Certificate Service (under
contract through UO) will be the end of this week, given
Internet2's decision not to renew that contract.

•  On November 1st, 2014, I'm accepting a new position with Paul
Vixie's data-driven security company, Farsight Security
(see http://www.farsightsecurity.com/)

•  It has been a real pleasure and privilege working with you all,
and I wish everyone all the best in the future when it comes to
their cryptographic work.

89

Thanks for The Chance to Talk
•  Are there any questions?

•  If you come up with any questions later:

joe@stsauver.com

•  These slides are available from

https://www.stsauver.com/joe/new-crypto-101/

90

