Just Enough Mathematica to Make you Dangerous Joe St Sauver, Ph.D. (joe@oregon.uoregon.edu)

Algebra...

% math	Use ssh to get to the % prompt	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
In[1] := Exit or hit control-d	Leave Mathematica (when you're ready to!)		
<pre>% math < sample.m > sample.lst % more sample lst</pre>	Run Mathematica commands from sample.m	Out[2] = $(x + y)^2$	
Using Mathematica like a calculator		<pre>In[3]:= Solve[x²==81,x] Out[3]={{x -> -9}, {x -> 9}}</pre>	Find the roots of an equation; note use of $==$ (rather than just $=$) in writing the equation.
In[2]:= 27.50-11.92 Out[2]= 15.58	Mathematica as a good old calculator hit ENTER (or shift-ENTER) after each command	<pre>In[4]:= Solve[x²=-4,x] Out[4]= {{x -> -2I}, {x -> 2I}}</pre>	Imaginary numbers? No problem
In[3]:= 15! Out[3]= 1307674368000	Large values are no problem; you could even compute 1500 factorial if you wanted to	$In [5] := Solve [{x+y==1, 3x+y==2}] Mathematica can also solution algebraic equations in mathematica can algebraic equations in mat$	Mathematica can also solve systems of algebraic equations in multiple variables.
<pre>In[4]:= ?Log Log[z] gives the natural</pre>	Need help with a function? Enter a ? followed	$\begin{array}{c} \text{Out[5]} = \{ \{ \mathbf{x} - > -, \ \mathbf{y} - > - \} \} \\ 2 & 2 \end{array}$	
logarithm of z (logarithm to	by the name of a Mathematica function. Not sure of a function's name? You can use a * to see possible matches, e.g., ?L* Note that Mathematica functions are case	Calculus	
logarithm to base b. In[5]:= Log[10,3453.8]		<pre>In[1]:= Limit[x/(Sqrt[x+1]-1),x->0] Out[1]= 2</pre>	Evaluate a limit
Out[5] = 3.538	sensitive and begin with a capital letter.	$In[2] := Dt[x^3+2x,x]$	Compute a total derivative
In[6]:= (4000/23) ³ 6400000000	Operations done on whole numbers are always represented exactly when possible.	Out $[2] = 2 + 3 x^2$	Denti al duri esti an anchetta a rema como
Out[6] = 12167	% means "recall the last result" and //N means "provide an approximate numerical result"	In[3] := D[(x 2) (y 3) + 4y + x + 2, x] Out[3] = 1 + 2 x y ³	Farital derivatives work the same way
In[7]:= %//N Out[7]= 5.26013 10 ⁶		$In[4] := D[x^3+2x,x,x]$ Out[4] = 6 x	Take the 2nd derivative with respect to x
<pre>In[8]:= Sin[60 Degree] Sqrt[3] Out[8]=</pre>	In [8] := Sin [60 Degree] Sqrt [3]Function args must be put in square brackets. Trig functions are in radians by default. Want a numeric value? Remember //N Inverse functions? ArcSin[]/Degree	In[5]:= Integrate[$3x^2+2x,x$] Out[5]= $x^2 + x^3$	Mathematica can also do integrals, just as you'd expect.
2		In [6] := Integrate $[E^x, \{x, 0, 1\}]$	Definite integral are also easy to evaluate.
<pre>In[9]:= Sum[i/(i^i),{i,1,\ Infinity}]//N Out[9]= 1.62847</pre>	Numerically evaluate an infinite sum. You can continue long Mathematica commands lines with a \backslash at the end of a line	$Out[6] = -1 + E$ $In[7] := <Out[8] := SetCoordinates[\Cylindrical]Out[8] = Cylindrical[Rr, Ttheta, Zz]In[9] := Integrate[Sqrt[1+4Rr^2] \Rr, {Rr, 0, 1}, {Ttheta, 0, 2Pi}] //NOut[9] = 5.33041Cartesian space is the default, but not our onlyoption. For example, let's find the surface areaof the parabola z=1+x^2+y^2 where x^2+y^2 <=1.Because of the nature of that restriction, it iseasier to work in cylindrical coordinates. We dedso via the vector analysis package (note thebacktick marks, not apostrophes, used whenloading a package!). Package info is athttp://documents.wolfram.com/v4/index20.html$	Cartesian space is the default, but not our only option. For example, let's find the surface area
In[10]:= BaseForm[223,2] Out[10]//BaseForm= 11011111 ₂	Convert the value 223 (decimal) to base 2 (binary).		of the parabola $z=1+x^2+y^2$ where $x^2+y^2 <=1$. Because of the nature of that restriction, it is easier to work in cylindrical coordinates. We do
<pre>In[ll]:= 16FAE7 + 162C3E Out[11]= 75557 In[12]:= BaseForm[%,16] Out12//BaseForm= 12725₁₆</pre>	Add FAE7 (hex) to 2C2E (hex); output by default is in decimal, but you can then force that output into hex, too, if you like.		

Linear Algebra...

In[1]:= w={{a,b}, {c,d}} Out[1]= {{a, b}, {c, d}}	Create a 2x2 matrix (we're using symbols, but you could equally easily use numeric values)	In[3]:=!!myda 4.1 10.7
<pre>In[2]:= w.{x,y}=={k1,k2} Out[2]= {a x + b y, c x + d y} == {k1, k2}</pre>	Use a dot product to apply that matrix of coefficients to two variables to form a system of two equations with constants $\{k1, k2\}$	<pre>[etc] In[4]:= newva "mydata.dat", Out[4]= {{4.1</pre>
<pre>In[3]:= Transpose[w]//MatrixForm Out[3]//MatrixForm= a c</pre>	Mathematica can easily do most standard linear algebra operations, for example, we can easily transpose matrix w	<pre>In[5]:= plot1 Out[5] = -Grap In[6]:= Fit[n Out[6] = 5,142</pre>
In [4] := Inverse [{ {1, -1}, {2, 2} }] 1 1 1 1 Out [4] = {{-, -}, {-(-), -}} 2 4 2 4	Or compute the inverse of a 2x2 numeric matrix	In [7] := plot2 Out [7] = -Grap In [8] := Show [Out [8] = -Grap In [8] := Diap
<pre>In[5]:= Det[{{a,b,c},{d,e,f},\ {g,h,i}]] Out[5]= -(c e g) + b f g + c d h</pre>	Or compute the determinant of a 3x3 symbolic matrix	Out[9] = -Grap
- a f h - b d i + a e i		Mathematica As A
<pre>In[6]:= Table[If[EvenQ[i] EvenQ[j] \ ,1,0],{i,3},{j,3}]//MatrixForm Out[6]= 0</pre>	In addition to entering matrices on an element by element basis, Mathematica will also let us construct matrices using rules, such as this example that sets elements of a 3x3 matrix to be 1 if the column or row is an even number.	<pre>(* Approach No w=Join[Table[0 Table[10,{4}], <<discretemath x=Union[KSubse Select[x,(Plus</discretemath </pre>
Plotting in Mathematica		<pre>//TableForm Print["\n ",Le</pre>
<pre>In [1] := Plot [x², {x, -5, 5}] Out [1] = -Graphics- In [2] := Display ["a.gif", %, "GIF"] Out [2] = -Graphics- Note: besides GIF format, you can also use the Display function to save Mathematica</pre>	Plot a function over an interval. If connecting from a Unix workstation or an X terminal, your graph will be shown in a new window; we also show saving graphic output in gif format.	<pre>(* Approach No solns=0; Do[If[((25i+10</pre>
graphics in PDF, EPS, PCL, PBM and other formats.	20	Mathematica on of
	15	UO has a site licens its installation on Uf and Unix systems.
		More Information
	-4 -2 2 4	<i>The Mathematica B</i> Wolfram [ISBN 0-5 the definitive refere

In[3]:=!!mydata.dat 4.1 10.7 [etc] In[4]:= newvals=ReadList[\ "mydata.dat", {Number, Number}] Out[4] = {{4.1,10.7}, [etc]} In[5]:= plot1=ListPlot[newvals] Out[5] = -Graphics- [not shown] In[6] := Fit[newvals, {1,x}, {x}] Out[6] = 5.14286 + 9.96429 xIn[7]:= plot2=Plot[%, {x, 1, 8}] Out[7] = -Graphics- [not shown] In[8]:= Show[plot1,plot2] Out[8] = -Graphics-In[9]:= Display["b.gif",%,"GIF" Out[9] = -Graphics-

Mathematica As A Programming Language...

	Work with (x,y) data points from an external file.
	Read in pairs of numbers from that file, storing
	the list of values by the name newvals. Plot the
	Finally, overlay both and save as a gif
	⁶⁰
	10
1	20
-	
	⊿ 4 6 8

Page 2

<pre>* Approach No. 1 *) =Join[Table[0,{7}],Table[5,{7}],\ able[10,{4}],{25}]; <discretemath`combinatorica` ",length[%],"="" =union[ksubsets[w,7]];="" elect[x,(plus@@##)<="45&]\" pre="" rint["\n="" soln's"]<="" tableform=""></discretemath`combinatorica`></pre>	If Mathematica doesn't have precisely what you need (or what it has is overkill), you can always use Mathematica as a programming language and write your own code. For example, assume you have a pile of 5, 10 and 25 pound weights. Using no more than 7 of them in any instance, how many combinations can you form that will total no more than 45 pounds?
<pre>* Approach No. 2 *) plns=0; p[If[((25i+10j+5k<=45)&&\</pre>	We can solve that problem using Mathematica's Combinatorica package, or we can just write a little program to solve that problem directly by looping through a three way nested do loop, using an if statement to tally only solutions that meet the specified restriction.

Mathematica on other platforms...

UO has a site license for Mathematica covering its installation on University owned PC's, Macs, and Unix systems.	For more information, please see http://darkwing.uoregon.edu/~hak/mathematica			
More Information About Mathematica				
<i>The Mathematica Book, 4th Ed.</i> , by Stephen Wolfram [ISBN 0-521-64314-7, 1470 pages] is the definitive reference.	See also http://www.wolfram.com/ and http://documents.wolfram.com/ for online copies of many Mathematica documents.			