
SSL As Designed, SSL As Deployed,
SSL As It Should Be

Joe St Sauver, Ph.D.
(joe@uoregon.edu or joe@internet2.edu)

InCommon Certificate Program Manager and
Internet2 Nationwide Security Programs Manager

University of Idaho Computer Security Awareness Symposium
UI Commons Crest-Horizon Room, 10:30-Noon, Oct 13th, 2011

http://pages.uoregon.edu/joe/designed-deployed-should-be/

Disclaimer: All opinions expressed are those of the author, and do not
necessarily represent the opinion of any other entity.
Note: Portions of this talk were originally presented by the author as a
REN-ISAC Techburst session and/or Internet2 Member Meeting session.

I. Introduction

2

Where I’m "Coming From"
• Full Disclosure: I want folks to know that my

responsibilities now include serving as InCommon’s
Certificate Program Manager, in addition to my continuing
responsibilities as Internet2’s Nationwide Security Programs
Manager, all under contract through UO.

• If that potentially "biases" my interest in certificate-
related security topics, well, you’ve been officially advised.

• If you're hoping for a "sales pitch," you're going to be
disappointed, because that's not my goal today. (If you
would like to know about the InCommon Certificate
Program, check out http://www.incommon.org/cert/).
I may mention it once or twice, but that's about it.

3

Bringing Everyone To A Common Foundation

• Let's begin by talking a little about web security.
• I know that the material I'm going to begin with will be

review for many of you; unfortunately the material that
may be review for you probably won't be review for
others.

• Since today's audience is diverse, I want to get everyone
to a common level before we move forward. I appreciate
your patience for a few slides. This talk will pick up
technical "velocity" as we move along, although I'm going
to try to keep most of this talk approachable for
everyone.

• Anyhow, our first questions are, and probably must be,
"Why are we particularly interested in web site
security?" and "Why focus on that issue NOW?"

4

Factor 1: The Web Is A Common Bearer Service

• While dedicated clients using specialized network protocols
were once common, these days virtually all enterprise
network applications are accessed via a common bearer
service: (almost) "everything is over the Web."

• This is true for your users' email, their calendaring and
scheduling, campus administrative applications, high
performance computing (via web science gateways), and
even campus ecommerce activities (whether that's buying a
ten buck tee shirt as part of a departmental fund raiser
or paying $10,000 in tuition for the term).

• When web applications involve sensitive data (such as
account usernames and passwords, FERPA- or HIPAA-
covered data, or PII such as credit card numbers), that
web activity will normally occur over a SSL/TLS-
secured connection.

5

Factor 2: Web Apps Are A Prime Focus For Attacks

• http://www.sans.org/top-cyber-security-risks/summary.php

Priority Two: Internet-facing web sites that are
vulnerable.

 Attacks against web applications constitute more than 60% of the
total attack attempts observed on the Internet. These vulnerabilities
are being exploited widely to convert trusted web sites into malicious
websites serving content that contains client-side exploits. Web
application vulnerabilities such as SQL injection and Cross-Site
Scripting flaws in open-source as well as custom-built applications
account for more than 80% of the vulnerabilities being discovered.
Despite the enormous number of attacks and despite widespread
publicity about these vulnerabilities, most web site owners fail to scan
effectively for the common flaws and become unwitting tools used by
criminals to infect the visitors that trusted those sites to provide a
safe web experience.

 [Priority One? "Client-side software that remains unpatched."] 6

Factor 3: Many Education Web Sites Remain
Vulnerable

• "Most Websites Vulnerable to Attack, WhiteHat Study Says"*

 The average website has serious vulnerabilities more than nine
 months of the year, according to a new report [...]

 Heavily regulated industries like healthcare and banking have the
lowest rates, yet 14 and 16 percent, respectively, of the sites in those
industries had serious vulnerabilities throughout the year. [...]

 The education industry has the dubious honor of leading the category
 -- 78 percent of [education] sites [...] were vulnerable [...]

 * www.darkreading.com/vulnerability-management/167901026/
 security/application-security/229300525/most-websites-vulnerable-to-
 attack-whitehat-study-says.html (March 8th, 2011)

7

Factor 4: Some May Mistakenly Believe That The
Sheer Presence of An "https" Prefix In A URL

Equates to Overall Web Site "Security"
• Many users have been trained to check to see if web sites use "https"

(SSL/TLS) before they entrust personally identifiable
information (such as credit card numbers) to a web site.

• SSL/TLS support *IS* an important part of securing a web site, but
not all SSL/TLS implementations are the same, and just having some
sort of SSL/TLS support, by and of itself, is not enough to make your
website secure. (SSL/TLS support is "necessary but not sufficient," as
mathematicians might say).

• We need to "step up our game" when it comes to web site security
in general (while also improving how we deploy SSL/TLS in
particular).

• Confusion on this point is similar to confusion about DNSSEC: while
DNSSEC is needed to eliminate some DNS-related vulnerabilities, and it
is an important thing for sites to do, DNSSEC does NOT fix all
potential
DNS vulnerabilities (nor does it pretend to do so). Similarly, SSL/TLS
helps mitigate some web security vulnerabilities, but is not a magic pill

8

Factor 5: There Is (Appropriate!) Increasing
Public Scrutiny Of Internet SSL/TLS Usage

9

Factor 6: Internet2/InCommon Does Now Have
Its Own Certificate Service

• The InCommon Certificate Service offers Certificate
Service subscribers unlimited certificates, including
unlimited SSL certificates and even unlimited extended
validation certificates, for one flat fee.

• Because of that new cert service, those of us involved
with Internet2 Security have become motivated to look
more closely at the "state of the practice" when it comes
to certificate use, both for routine uses (such as for
securing web servers), as well as for less common
scenarios (such as deployment of "personal certs")

• That said, let me emphasize that the opinions expressed
in this talk represent my own point of view, and not
necessarily those of InCommon or Internet2, the
University of Oregon, or any other entity.

10

II. A Quick Hand-Waving
Introduction To SSL/TLS

11

What Is SSL/TLS?
• The "Secure Socket Layer" ("SSL") and "Transport Layer

Security" ("TLS") protocols are cryptographic technologies
that are used, along with certificates, to help secure
e-commerce websites and other Internet resources.

• SSL is a relatively old technology (at least by Internet
historical standards), dating to 1994-1995 with the public
release of SSL version 2.0* by Netscape... For context,
Mosaic, the first popular graphical web browser, was
created at NCSA and released in 1993.

• SSL has continued to evolve over time:
-- 1996: SSL version 3.0
-- 1999: TLS 1.0 (aka SSL 3.1) <-- the latest
"universally
-- 2006: TLS 1.1 (aka SSL 3.2) supported" version,
-- 2008: TLS 1.2 (aka SSL 3.3) believe it or not!

 * SSL version 1 was reportedly never publicly released.
12

"So Tell Us About The Technical Differences Between
the Versions of TLS, and How the TLS Handshake
Process Works, and the TLS Record Format and..."
• No.

• While it is sometime considered de rigueur to do a "deep
dive" with state diagrams and record layouts as part of a
technical briefing, we don't have time to cover that today,
and frankly you really don't need to know the protocol
level details for our purposes.

• If we were doing a whole term-long class devoted to
cryptography, that would be a different matter, but
our time together today is short and I want to focus on
stuff that's important from an operational security point of
view. For example, what does SSL/TLS really do for us?

13

What SSL/TLS Does For Sites and Users
• By using SSL/TLS secured web sites, site administrators

and their users get three potentially quite useful things:

-- network traffic gets protected from eavesdropping
-- network traffic gets protected from tampering, and
-- users get protected from accidentally going to a
 look-alike counterfeit site (assuming the SSL/TLS
 certificate being used has been issued by a source
 that adequately validates the identity of the party
 to whom that certificate has been issued, and some
 other conditions are also satisfied)

• A tremendous amount of detail underlies those three
fundamental objectives. You'll be able to see this if you
read the SSL/TLS protocol-level RFCs.

14

By the (RFC) Numbers
• RFC 2560, "X.509 Internet Public Key Infrastructure Online

Certificate Status Protocol – OCSP," http://tools.ietf.org/html/rfc2560
• RFC 5246, "The Transportation Layer Security (TLS) Protocol, Version

1.2," http://tools.ietf.org/html/rfc5246
• RFC 5280, "Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile,"
http://tools.ietf.org/html/rfc5280

• RFC 5746, "Transport Layer Security (TLS) Renegotiation Indication
Extension," http://tools.ietf.org/html/rfc5746

• RFC 5878, "Transport Layer Security (TLS) Authorization Extensions,"
http://tools.ietf.org/html/rfc5878

• RFC 6066, "Transport Layer Security (TLS) Extensions: Extension
Definitions," http://tools.ietf.org/html/rfc6066

• RFC 6176, "Prohibiting Secure Sockets Layer (SSL) Version 2.0,"
http://tools.ietf.org/html/rfc6176

• Plus bits and pieces in other RFCs and errata to most of the above...
Note that these documents are NOT light/easy reading.

15

Stating the Obvious
• Many users/system administrators/security people never

have (and never will!) read and internalize those RFCs, in
part because understanding cryptographic protocols often
require a degree of comfort with advanced mathematics.

• If you do want to read at least a little about SSL/TLS,
Wikipedia actually has some nice introductory articles:

en.wikipedia.org/wiki/Transport_Layer_Security
en.wikipedia.org/wiki/Comparison_of_TLS_Implementations

• Fortunately, you really don't need an in-depth
understanding of SSL/TLS protocols if you're not doing
protocol-level development work. There's an active
community of very well-regarded cryptographers and
coders that are "carrying the water" for us in this area.

16

Practitioner-Level Crypto
• Practically speaking, for most practitioners, SSL/TLS "is"

what Apache 2.x (and OpenSSL) say it "is."
• Why? As of June 2011, Apache currently has a ~65%

market share compared to its next-closest competitor,
Microsoft, at roughly 17%. See http://news.netcraft.com/
archives/category/web-server-survey/

• Given that level of market dominance, we will largely focus
on Apache (running on Unix) when we discuss web servers
during the remainder of this talk.

• Because many SSL/TLS issues come back to how Apache
was installed and configured, let's now review how one
actually does that installation and configuration.

17

"But Joe! We already know how to install and
configure a web server! You're wasting our time!"

[or alternatively]

"Why are you telling *us* how to install Apache???
We're *not* sysadmins!"

18

A Quick Reality Check
• I don't want to point fingers at any particular site.

Everyone's doing the best that they can with the
resources they have available. Unfortunately, though,
sometimes things just aren't where they need to be.

• When I checked a sample of higher ed institutions with a
popular SSL site checking tool from Qualys SSLLabs, I
empirically observed higher ed sites that were "all over
the map" when it came to their web server security.

• I encourage YOU to check the website(s) YOU care
about at https://www.ssllabs.com/ssldb/index.html (note
that you can conceal your scores if you're worried you'll do
badly!)

• If you get a 100% score on that evaluation, I apologize in
advance for wasting your time, however, if your site or
sites gets a lower mark, let's take a couple of minutes to
review how to install/update Apache 19

The Higher Ed SSLlab Score Distribution for 119 Dot Edus
 Cumulative
Cumulative

score Frequency Percent Frequency Percent
--
 0 7 5.88 7 5.88 <-- F

(score<20)
 48 10 8.40 17 14.29 <-- D

(score>=20)
 52 29 24.37 46 38.66 <-- C

(score>=50)
 57 4 3.36 50 42.02
 60 1 0.84 51 42.86
 61 19 15.97 70 58.82
 62 1 0.84 71 59.66
 73 8 6.72 79 66.39 <-- B

(score>=65)
 76 1 0.84 80 67.23
 81 5 4.20 85 71.43 <-- A (score>=80)
 84 1 0.84 86 72.27
 85 25 21.01 111 93.28
 86 1 0.84 112 94.12
 88 7 5.88 119 100.00

20

Some Additional Higher Ed SSLlab Results...
Does the server permit SSL 2.0? (It shouldn't – SSL2.0 is insecure):

NO 76 (63.87%)
YES 43 (36.13%)

Does the server do renegotiation securely? (insecure renegotiation is also bad)
YES 54 (45.38%)
BLOCKS ENTIRELY 18 (15.13%)
NO (VULNERABLE) 47 (39.50%)

What's the minimum cipher length acceptable to the server? (128 bit or better is good)
40 bits 63 (52.94%)
56 bits 12 (10.08%)
128 bits 41 (34.45%)
168 bits 1 (0.84%)
even anonymous ciphers OK 2 (1.68%)

Server cert signature length? (2048 bit is now recommended)
768 bit 1 (0.84%)
1024 bit 65 (54.62%)
2048 bit 53 (44.54%)

And there's a lot more data out there if you look at the sites you're responsible for...
21

(Please) Don't Shoot The Messenger
• I'm NOT trying to prove that I'm "smarter" than anyone

else or that anyone's done a "bad job" with their web site.
• I'll freely concede that EVERYONE probably knows more

about rolling out both regular and secure web sites than I
do.

• On the other hand, I do want people to make an informed
objective assessment of where their web sites may be at,
and to have some concrete ideas for how they might be
able to improve them.

• I *would* like us to work on this cooperatively, as a
community.

• If I had to describe ONE THING that I'd like you to do
after today's session, it would be to check and fix any
security issues with your secure web server(s).

22

III. Installing Apache

23

Apache 1.x vs. Apache 2.x
• There are two major Apache release trains, 1.x and 2.x
• While Apache 1.3.42 was released in February 2010 (and thus may feel

relatively "current"), it was (and is) the final release in the Apache 1.x
family. If you're still using any 1.x version of Apache (and some
people in higher ed *ARE*), or you're using anything other than the
latest production 2.x release, you should upgrade (unless some
"application-related constraint" makes this "impossible" [cough]). At the
time I updated these slides in early October 2011, the most recent
production version of Apache 2.x was 2.2.21.

• To see what version you are actually running, on most Unix systems
look for the full path of the httpd that's running in the output from

% ps auxw | grep http (some sites need ef instead of auxw)

For example, your httpd might be at /opt/local/apache2/bin/httpd

You can then see what version you're running by saying:

% /opt/local/apache2/bin/httpd -version 24

Versions Seen In Higher Ed SSLlab Results... Are All Secure?
apache (version not specified) 29 (24.37%)
apache 1.3.26 1 (0.84%)
apache 1.3.28 1 (0.84%)
apache 1.3.37 3 (2.52%)
apache 1.3.39 1 (0.84%)
apache 1.3.41 1 (0.84%)
apache 2.0.46 1 (0.84%)
apache 2.0.50 1 (0.84%)
apache 2.0.52 1 (0.84%)
apache 2.0.52 (rh) 5 (4.20%)
apache 2.0.54 (fedora) 1 (0.84%)
apache 2.0.59 1 (0.84%)
apache 2.0.63 1 (0.84%)
apache 2.x (omitted here)
[...]
iis/6.0 13 (10.92%)
iis/7.0 2 (1.68%)
iis/7.5 2 (1.68%)
[plus some other really odd corner cases]

25

"Do We Really NEED To Upgrade?"
• Yes. Apache releases often address security issues which,

if left unpatched, can result in your server potentially
being exploited or (more commonly) DDoS'd.

• If you want to see the "gory details" for what's been
patched in Apache 2.2.x, check out (for example):
http://httpd.apache.org/security/vulnerabilities_22.html

• And if you think that the script kiddies don't actually
have production quality attack code leveraging these
vulnerabilities, see for example
http://www.metasploit.com/modules/
(grep that page for "Apache Range header" to see one
specific example of an Apache-focused exploit module)

26

Beware Multiple Parallel httpd
Installations

• Some of you may wonder why I bothered to have you
check to see the full path for the httpd you're running.

• The answer is that it can (unfortunately) be quite common
for a system to have MULTIPLE parallel httpd installations,
and the version that you see by default from an
interactive terminal session may (or may not) be the same
version that's currently running or the same version that's
normally launched at boot time (due to path issues, etc.)

• While it may be tempting to dismiss any installations in
"wrong" places as "stupid," different distros may put the
emphasis on different things (e.g., limiting "contamination"
to the minimum number of file systems, obtaining the best
system performance, protecting critical file systems from
accidentally filling up, preserving a still-required vendor-
pre-installed version, isolating sensitive config files, etc.)

27

Some Default File System Layouts For Apache
• A nice summary of many (but not all) Apache file system

layouts can be found at

http://wiki.apache.org/httpd/DistrosDefaultLayout

• Just to make EVERYONE equally unhappy, we'll use the
default file location /opt/local/apache2 , which isn't used
by any of the major vendors mentioned in the preceding
file.

• Adjust the filespecs I show in the slides ahead according
to the layout that your distro/installation uses.

28

Your Pre-Installed Version of Apache
• Because of its inherent modularity, potentially large

number of dependencies, and differing file system layouts
on different operating systems, Apache and related bits and
pieces can sometimes prove to be a complex product to
build from sources, install, and maintain.

• Fortunately, many popular operating systems come with a
version of Apache pre-installed by default.

• On the other hand, that pre-installed version of Apache
may lag the latest release (even after you apply all vendor
updates), or lack a feature you need, or come statically
built with features you don't need.

• You may thus want to (re) install the latest version of
Apache even if there's a vendor version already installed.

29

Using a Package Manager or Port Tool
• One nice alternative to installing from scratch is to use a

"package manager" or a "port tool" to install a
professionally prepared port of Apache.

• Going this route saves you the pain of figuring out any
tricks you may need to know in order to build Apache from
scratch for your platform.

• Using a package manager or port tool will also make it to
easy to stay patched up-to-date in the future.

• Unfortunately, each package manager/port tool is a little
different when it comes to installing Apache.

• We'll illustrate installation of Apache on a Mac with Mac
ports (hey, we had to pick something, right?)

• Begin by installing macports on your Mac OS X system if
you don't already have it installed (see
http://www.macports.org). 30

Example Apache Installation Using Mac Ports
• Once you have Mac Ports installed, you can install Apache by saying:

% port search apache <-- find the package we want
% su <-- su doesn't work on your Mac? See
 http://support.apple.com/kb/HT1528
port install apache2
(This will install apache2 and also recursively install any dependencies
(such as apr, apr-util, expat, openssl, pcre, perl5, etc.) if needed).

 # port load apache2
launchctl load -w /Library/LaunchDaemons/org.macports.apache2.plist

 (This will set up this version of Apache to be the one that's run/used)

• You might also need to punch a hole in your firewall rules to expose
your web server to the world (you will likely be automatically prompted
to do so on most Macs). Note: do NOT go to System Preferences -->
Sharing --> Web Sharing in an effort to allow httpd, you will end up
launching Apple's default apache2, not the Apache you just installed!

31

Tailor httpd.conf
• The Mac Ports version of Apache ships with a basic

httpd.conf config file at /opt/local/apache2/conf/httpd.conf

• FWIW, the as-shipped Apache config file will generally
work fine as-is for a basic web server (although you
should tailor that file with your favorite editor (vi,
emacs, etc.), to at least have an accurate ServerAdmin
email address).

• You should know, however, that there are many additional
things that you can do via httpd.conf to help harden your
server; some excellent starting suggestions are in:

 "20 Ways to Secure Your Apache Configuration,"
 http://www.petefreitag.com/item/505.cfm

32

(Optional) Installing mod_security2
• mod_security is a Web Application Firewal (WAF) that you can run to

harden your Apache installation. While very helpful, unfortunately,
many sites do not use it. To install it using Mac Ports, say:

port search mod_security2
port install mod_security2

• Edit /opt/local/apache2/conf/httpd.conf to include:

LoadFile /opt/local/lib/libxml2.dylib
LoadFile /opt/local/lib/liblua.dylib
LoadModule security2_module modules/mod_security2.so

• You'll need to create and tailor a mod_security.conf file alongside
your httpd.conf file (I got my starting mod_security.conf from the
mod_security source files available at www.modsecurity.org). You will
also need to retrieve and install appropriate mod_security rules, such
as the Core Rule Set

33

(Optional) Installing mod_security2 (Continued)
• Retrieve and install the mod_security core rule set:

mkdir /opt/local/apache2/conf/crs
cd /opt/local/apache2/conf/crs
wget "http://sourceforge.net/projects/mod-security/files/\
modsecurity-crs/0-CURRENT/modsecurity-crs_2.2.0.tar.gz/download"
gunzip modsecurity-crs_2.2.0.tar.gz
tar xfv modsecurity-crs_2.2.0.tar
cd modsecurity-crs_2.2.0
mv * ..
cd ..
rmdir modsecurity-crs_2.2.0
more INSTALL <-- *DO* what's described in here! :-)

• And be sure you have required config files included in httpd.conf:
 <IfModule security2_module>
 Include conf/modsecurity.conf
 Include conf/crs/modsecurity_crs_10_config.conf
 Include conf/crs/activated_rules/*.conf
 </IfModule>

34

Make Some Sort of Home Page For Your Web Server
• The httpd.conf file will tell you the location for your web server's

document root; in our case it is /opt/local/apache2/htdocs

• cd to that directory, then create an index.html file (using vi, emacs, or
your favorite editor), so the web server has something to display:

<HTML>
someserver.example.edu

• Make sure that file's readable by all:

 # chmod a+r index.html

35

Start Apache
• You can then launch Apache:

/opt/local/apache2/bin/apachectl start

36

Check To Make Sure Everything's Okay
Check to see if there are httpd's running (you will typically see
several pre-spawned and ready-to-go, that's normal):
ps auxw | grep httpd

If there aren't any httpds, check the log files for possible errors:

tail -f /var/log/system.log <-- ctl-C to interrupt
tail –f /opt/local/apache2/logs/error_log

 Everything looking okay? Now try connecting from a browser by
plugging in the address of your server in the browser's address bar:

http://someserver.example.edu/

 If you see the home page you created on the previous slide,
you've got Apache running!

37

Some Random Thoughts On Log Files
-- Do you normally review your syslog and web logs? Do you think you
 SHOULD be paying (more) attention to your syslog and web log files?

-- Who's responsible for doing that review? Your web person? Your
 sysadmin? A security person?

-- How do you do it? Is there a log analysis tool you use?

-- What do you look for?

-- What do you do if you see anomalies (if anything?)

-- Have you considered secure centralized logging? (syslog-ng, etc.?)

38

IV. Enabling SSL/TLS On
Apache2 With mod_ssl

39

You've Got (Still) More Work To Do
• You have a web server installed and running, however, it's

NOT a SSL/TLS secured web server. Enabling SSL/TLS
on that server requires you to obtain (or create) a cert,
and then configure the server to do SSL/TLS.

• Many operating systems will have a vendor web page or
some other documentation walking you through the
process of creating a "self-signed" certificate and enabling
mod_ssl (the Apache module that is normally used to
enable SSL/TLS).

• For example, for OS X, see:
http://developer.apple.com/internet/serverside/modssl.html

40

OpenSSL
• The material we're going to show you on the following

slides assumes you have the latest version of OpenSSL
installed (normally OpenSSL will automatically get installed
as part of installing Apache, as an Apache dependency).

• Because OpenSSL does all the "heavy lifting" for our
crypto, we want to make sure that it's completely
patched
up-to-date. As of the date this presentation was updated,
that implies running OpenSSL 1.0.0e

% openssl version
OpenSSL 1.0.0e 6 Sep 2011

[FWIW, Some package manager/port operations may not
yet have a packaged version of this most recent release]

41

The Process of Creating A Cert With
OpenSSL

1) Make a working directory and cd down into it:
% mkdir KeyGen
% cd KeyGen

2) Create a PEM-format 3DES-encrypted RSA server private key
 % openssl genrsa -des3 -out server.key 2048

% chmod 0400 server.key <-- protect your private key from being read

Note: pick a strong password and do NOT forget it!
Back up server.key (and your password!) somewhere safe!

 3) Create a PEM-format Certificate Signing Request
 % openssl req -new -key server.key -out server.csr

 Note: when asked for your "Common Name," this must be the fully
qualified domain name of your server!

 For now, omit entering a challenge password / optional company name
42

"What's PEM and 3DES and RSA and..."
Besides the math that may be involved, another thing that tends to
discourage some people when they begin working with cryptographic
apps is the amount of jargon involved (sorry about that!).

 For example, on the preceding page, "PEM" stands for "Privacy
Enhanced Mail" (even though what we're working on has nothing to do
with mail). PEM format files are "base 64 encoded" text files (unlike
some other non-printable binary format files). As text files, PEM-
format files can easily be copied or transfered just like any other text
file. (See en.wikipedia.org/wiki/X.509#Certificate_filename_extensions)

 "3DES" stands for Triple DES, a common algorithm for encrypting
content. See http://en.wikipedia.org/wiki/3DES "RSA" is yet another
cryptographic algorithm. See http://en.wikipedia.org/wiki/RSA

 Note that you do NOT need to understand the mathematical
subtleties of these algorithms to successfully use SSL/TLS.

43

"Self-Signed" Vs. "Signed by a Real CA"
At this point, however, there IS one critical distinction that you do
need to understand, and that's the difference between a self-
signed cert, and a cert that's been signed by a real certificate
authority.

 You can create your own "certificate authority," and use that "CA" to
sign your own certificate, OR you can request that a real (e.g., widely
accepted) certificate authority issue and sign your certificate.

 For the purpose of this part of the discussion, we'll create our own
"certificate authority" and issue and sign our own server certificate.

 Note: our creation of a CA certificate is being done as part of this
talk
as an exercise/example. I do NOT meant to imply that anyone can or
should attempt to create a "trustable" CA this way!

 For that reason, I'm going to put "CA" in quotes while we're talking
about anything associated with our "self-made" "CA"

44

Creating Your Own "Certificate Authority"
1) Let's create a 2048 bit key for your own "certificate authority"

 % openssl genrsa –des3 -out ca.key 2048
% chmod 0400 ca.key

 Note: pick a strong password and don't forget it!
 Back up ca.key (and your password for that key!) somewhere safe!

 2) Now create a self-signed "CA" cert
 % openssl req -new -x509 -days 365 -key ca.key -out ca.crt

 3) Now create and sign the server cert with the "CA" cert you made
 % openssl x509 –req -days 365 -in server.csr -out server.crt \

-CA ca.crt -CAkey ca.key –CAcreateserial

 Now let's copy those files into place...
45

Moving The Certs and Key Files Into Place
% su
mkdir /opt/local/apache2/ssl.keys
cp server-ca.crt /opt/local/apache2/ssl.keys/server-ca.crt
cp server.crt /opt/local/apache2/ssl.keys/server.crt
cp server.key /opt/local/apache2/ssl.keys/server.key

 The server's private key is password protected. This means that you'd

need to supply the password for that cert as part of the startup
sequence. If you can't supply that password at startup, you're S-O-L.
Many server admins therefore routinely strip the password from their
server's private key, even though that reduces its security:

cd /opt/local/apache2/ssl.keys
cp server.key server.key.original
openssl rsa –in server.key.original –out server.key
chmod 0400 server.key <-- IMPORTANT, Don't Forget To Do
This!

46

Badness Inherent in That Process
There's a lot of inherent badness in the process you just
saw, besides just stripping the password from the server's
private key. Let me just mention a few examples:

-- when you created your server's certificate request you
 supplied a bunch of information; it never got validated
 by anyone (except yourself); ditto for the "CA" cert.
 The "identities" associated with those public keys
 should NOT be trusted. You could say you're
ANYONE.
-- a "CA" key should never be on an Internet-connected
 host (if a real CA key gets compromised, chaos results)
-- what about revoking no-longer-trustworthy certs?

 Those (and other) issues notwithstanding, these certs will
work (at least for testing/demonstration purposes). 47

Enabling SSL: edit httpd.conf
In conf/httpd.conf, make sure you've uncommented:

Include conf/extra/httpd-ssl.conf

48

Now edit conf/extra/httpd-ssl.conf
In the default VirtualHost stanza, localize appropriately:

ServerName someserver.example.edu:443
ServerAdmin johnsmith@example.edu

Only do higher security ciphers, and only use trustworthy SSL Protocols:
SSLCipherSuite ALL:!aNULL:!ADH:!eNULL:!LOW:!MEDIUM:!EXP:+HIGH
SSLHonorCipherOrder on

SSL Protocol Support
SSLProtocol –ALL +SSLv3 +TLSv1

Point to the locations of the cert files:

SSLCertificateFile "/opt/local/apache2/ssl.keys/server.crt"
SSLCertificateKeyFile "/opt/local/apache2/ssl.keys/server.key"
SSLCertificateChainFile "/opt/local/apache2/ssl.keys/server-ca.crt"

49

What Are The Parameters in Those
SSLCipherSuite and SSProtocol Lines?

-- See http://httpd.apache.org/docs/2.0/mod/mod_ssl.html#sslciphersuite

SSLCipherSuite ALL:!aNULL:!ADH:!eNULL:!LOW:!MEDIUM:!EXP:+HIGH

That forbids auth algorithms w/o authentication (!aNULL), forbids Diffie Hellman
authentication (!ADH), forbids null cipher authentication (!eNULL), forbids Low
and Medium strength ciphers (!LOW, !MEDIUM) and export ciphers (!EXP);
and says the server should use High strength ciphers.

-- See http://httpd.apache.org/docs/2.0/mod/mod_ssl.html#sslprotocol

SSLProtocol –ALL +SSLv3 +TLSv1

That command disables SSLv2, an inherently insecure protocol that you should
NEVER use (see RFC 6176, "Prohibiting Secure Sockets Layer (SSL) Version 2.0")

50

"Can I Really Safely Dump Weak & Medium
Ciphers?"

• Yes. However, if you do try it and run into some unexpected issue,
backing that choice out is trivial, so go ahead and live on the
cryptographic wild side! :-;

• By the way, some may wonder how we came to deploy weak ciphers in
the first place. Were we just brain dead? No. In the bad old days,
weak crypto was mandated for export applications by the U.S.
government.* As a result, some international users only had access to
crypto libraries using weak 40 bit or 56 bit ciphers. If you only
offered stronger ciphers on your secure web server, in the bad old
days, users with crippled web browsers couldn't connect. These days,
all browsers support strong crypto, so dump 40 & 56 bit ciphers!

• The other factor that formerly drove some sites to use weak(er)
ciphers was the computational load that use of stronger ciphers might
impose. With current CPU horsepower (processor speed and core
count), CPU impact has effectively become a non-issue for all but the
most heavily loaded sites (and you should upgrade anyhow!)

* en.wikipedia.org/wiki/Export_of_cryptography_in_the_United_States 51

"What About That Other Parameter You Highlighted?
Is There Anything Better Than TLSv1?"

• OpenSSL supports TLS v1.0, but currently shipping production versions
of OpenSSL DO NOT do TLS v1.1 (RFC4346, April 2006) nor TLS v1.2
(RFC 5246, Aug 2008) as of the time these slides were built.

• If you're an enthusiast and want support for TLS v1.1 or TLS v1.2, you
may want to see the alternative TLS implementations mentioned at
en.wikipedia.org/wiki/Comparison_of_TLS_Implementations (But is
there a "mod_foocrypt" to easily integrate all of those alternatives
with Apache? For gnutls yes, but in at least some other cases, no...)

• Some TLS 1.2 implementations are also fairly exotic/experimental and
may be thinly supported, tricky to successfully build on some
operating systems, or lack other features (like compression support).

• Browser support for TLS v1.2 also remains regrettably uneven
(en.wikipedia.org/wiki/Transport_Layer_Security
#Browser_implementations)

52

Browser Exploit Against SSL/TLS Tool (BEAST)

• The technical media has been all atwitter recently about
BEAST, a browser-based attack exploiting long-known
(heretofore theoretical) vulnerabilities that exist in widely
deployed and routinely used versions of SSL/TLS.

• Unfortunately, the community still hasn't really converged
around a practically workable solution to this vulnerability.

• One of the nicest summaries I've seen of what browser
vendors are thinking about is: "Browsers Tackle the 'BEAST'
Web Security Problem," September 29th, 2011,
http://news.cnet.com/8301-27080_3-20113530-245/
browsers-tackle-the-beast-web-security-problem/
(or try http://tinyurl.com/beast-summary if you prefer).

• For now, I think the best advice I can give you on this one
is to continue to monitor this vulnerability.

53

Getting Back to Apache... Let's Start Apache
With mod_ssl and Check for Any Errors
Start (or restart) Apache:

 # /opt/local/apache2/bin/apachectl start (or restart)

Check to see if there are httpd's running:
ps auxw | grep httpd

If there aren't, check the log files for errors:

tail -f /var/log/system.log <-- ctl-C to interrupt
tail –f /opt/local/apache2/logs/error_log

 Everything looking okay? Now try connecting from a browser:

https://someserver.example.edu/ <-- Note the s in https

 What will you (hopefully) see?
54

This Example Warning Is NOT An "Error"

55

If You WERE to Click "Add Exception" (Doh!)

In spite of all those warnings, most users will, naturally,
happily proceed to click on "Confirm Security Exception."
At that point, the SSL/TLS "trust" game is over for
that server... 56

Sure Looks Like A Real Trusted Site Now, Eh?

57

What If You Wanted To Delete A (Mistakenly)
Trusted SSL/TLS Server Certificate? In Firefox

Preferences...

58

V. Certificate Authorities and
MITM Attacks

59

Assume You Were Asked To Click On a URL...
• I'm not going to give you an actual URL to click on,

but let's assume that someone on the Internet asked you
to click on a URL that looked something like:

http://www.example.com/my-ca.crt

 Would you do it? Would you click on that link? I think
many people would – heck, they click on phishing URLs all
the time, and malware URLs, and all sorts of stuff, right?
There's nothing that looks particularly evil about that link
(I mean heck, it doesn't end in .exe or anything, right?)

• If someone did click on a link like that, they might see a
popup dialog that looked like...

60

The Rather Matter-of-Fact Warning You See When
You're Offered A New Certificate Authority

Note: Most users won't examine the CA certificate, or if they did, they
typically won't understand/correctly interpret what they'd likely be
shown. Most users have learned to "always" just click "OK"

61

Compare That Quite Low Key New CA Warning Dialog
To the Earlier Positively Shrill Self-Signed Cert

Dialog
• On slide 55, we showed you the relatively in-your-face

dialog box Firefox displays when you run into someone
who's trying to get you to accept a self-signed cert.
It was pretty shrill. Remember the little "passport
inspector" logo and the "Get me out of here!" text?

• Contrast that with what you just saw on the preceding
slide. Given the unbounded destruction that trusting a
random CA can impose, don't you think that the "Are
you SURE you want to accept this new CA?" dialog
should have a few more bells ringing and flashing lights
going off???

• In my opinion, that's a pretty matter-of-fact dialog box
for such a potentially security-devastating decision!

62

What Could Happen? Man In The Middle (MITM)
Attacks

• SSL/TLS is supposed to provide end-to-end encryption, all
the way from your browser, all the way to the remote
site's secure web server. When traffic is subject to a
successful MITM attack, that ceases to be true. When
someone manages to successfully conduct a MITM
attack, they get between you and the server you're
trying to securely communicate with, impersonating that
real server.

• They (rather than the ultimate destination) can accept and
decrypt your encrypted traffic. They can then view (and/or
modify) that traffic, before surreptitiously re-encrypting it
via a second SSL/TLS session, and sending it on its way.

• If SSL/TLS works the way it is supposed to, it would be
impossible for you to be conned into trusting an imposter's
system – the imposter wouldn't have the certificate it
should have, signed by a trusted CA. If users decide to
trust a new random CA, however, that model can fall apart

63

"Could Someone Really MITM Me?"
• Yes. MANY MITM approaches exist. Just to mention a few:
• Advertise one or more "evil twin" wireless access points,

targeting local wireless sites that aren't doing 802.1X
• Attack local layer 2 switching infrastructure using ARP

poisoning with something like Cain and Abel
(www.oxid.it/cain.html)

• Attack wide area routing by injecting more specific routes
(see "Revealed: The Internet's Biggest Security Hole,"
www.wired.com/threatlevel/2008/08/revealed-the-in/)

• Attack DNS mapping of fully qualified domain names to IP
addresses (via DNS cache poisoning attacks, or "DNS
changer" malware), see for example
www.metasploit.com/modules/auxiliary/spoof/dns/bailiwicke
d_domain

• Institutionally install an application layer gateway doing
DPI on all traffic (hey, their network, their rules, right?)

64

Just In Case I Haven't Spelled This One Out Clearly
Enough: Trusting a "Random" New "CA" Is REALLY

Bad
• If you decide to trust an untrustworthy "certificate

authority" you may end up subsequently trusting all sorts
of random sites that you shouldn't, such as sites that are
impersonating...

-- favorite online stores
-- your bank, brokerage, or credit card company,
-- your doctor's office,
-- critical "secure" university web sites,
-- etc., etc., etc.

• Some machines are more vulnerable to getting new random
untrustworthy CAs than others...

65

Shared Computers Can Be Very Vulnerable

• We're all familiar with shared computers – we have them
in our homes, in our campus computer labs, in cyber cafes,
in libraries, in hotel lobbies, at conferences, etc.

• If those systems aren't COMPLETELY locked down and
ROUTINELY re-imaged to a known-good state after
EVERY USE, a malicious (or clueless) user could:
-- accept a bogus certificate authority (it only takes a
 few seconds to do so), and then
-- via DNS changer malware, configure the system to use
 an untrustworthy recursive resolver ("DNS server"),
 thereby driving subsequent users to a web server of
 the malicious user's choice that will *seem* to be the
 secure and trustworthy destination they wanted
-- alternatively, the malicious user could just transparently
 eavesdrop upon all the user's "confidential" traffic

66

The Default Set of CAs in User Browsers
• Users have the discretion to add additional certificate

authorities to their list of trustworthy CAs, as we just
showed you. Obviously that's a huge potential risk.

• Users can also review the default list of as-shipped
browser-trusted certificate authorities, and delete any
CAs that they don't like (but few people do).

• In most cases, user simply blindly trust those who
create and distribute browsers to ultimately decide
which CAs should be considered to be "trustworthy" by
default.

• There are some things about that that should make you
unsettled. 67

Different Browser Vendors Trust Different Default CAs

• While you might expect all vendors to trust an agreed upon common
set of commercial certificate authorities, that's not the case. (We'll
leave comparing and diff'ing the various default CA lists, and
speculating on the reasons for the differences between the various
vendor lists, as an exercise for the reader). To get you started:

-- Mozilla Included Certificate List
 http://www.mozilla.org/projects/security/certs/included/
-- Opera Root Store
 http://my.opera.com/rootstore/blog/
-- Windows Root Certificate Program Members
 http://social.technet.microsoft.com/wiki/contents/articles/3281.aspx

 Note: those lists can and do get "automatically" updated over time!

• You can also check the list of CAs your browser trusts by checking
from within that browser. For example, in Firefox, go to Preferences
--> Advanced --> Encryption --> View Certificates --> Authorities.

68

Should Each of Us Really Be Trusting All Default CAs?

• Commercial CAs routinely get attacked, and recently the
Dutch CA DigiNotar B.V. was compromised. That
hacker/cracker issued a variety of wildcard certificates,
plus certs for critical and/or very high profile sites.

• As a result of that incident, all known mis-issued DigiNotar
certs have been revoked. DigiNotar’s root certificates have
also been eliminated from the default list of trusted CAs in
popular browsers and operating systems. For more, see:

 -- “DigiNotar Damage Disclosure,”
https://blog.torproject.org/blog/diginotar-damage-
disclosure
-- “DigiNotar Public Report, Version 1,” [English language]
http://tinyurl.com/diginotar-report
-- “VASCO Announces Bankruptcy Filing by DigiNotar B.V.,”
http://tinyurl.com/diginotar-bankruptcy

69

Pruning Browser Root Cert Stores?
• The DigiNotar incident has also made some parties

recommend some, um, unconventional strategies, including:

 "[...] configuring the enterprise browser platform so as
 to reduce the number of root CAs the enterprise relies
 upon. First weed out those root certificates that no
 one recognizes. [...] Second, weed out those root
 certificates that are used rarely or not at all. [...] Third,
 for those CAs that remain, take a few moments to
 interact with the CAs and determine their practices
 with respect to RAs and their other affiliates.
 [continues]"

 "From the Experts: SSL Hacked!", Corporate Counsel,
 Law.com, Sept 28, 2011, tinyurl.com/pruning-root-certs

70

What's The Big Deal About Having
"Lots" of Default Trusted CAs?

• Each and every default-trusted certificate authority can
potentially issue a perfectly valid (looking) certificate for
any domain. Those valid (looking) certificates can then be
used by attackers trying to man-in-the-middle your secure
web traffic w/o being detected.

• If you have over a hundred and fifty CAs that you trust
by default, people worry that that's “too many,” and that
one or more of them may in fact be insecure or
untrustworthy.

• The "obvious" (if hugely difficult) solution to this problem is
to remove the "obscure" or "unneeded" CAs from that
default set, as the author on the preceding slide suggests.

• In reality, however, that’s a task that's fraught with many
problems. 71

Before Giving That Strategy A Try (If You
Do...)

• Be sure you can restore the default trust anchors, just in
case you end up removing something you shouldn't have.

• Recognize that most people have little or no basis for
recognizing or assessing trust anchors for retention or
potential removal decisions. You might try saying, for
example, "I'm only going to keep big American CAs," but
you might be surprised at how many commonly used/critical
web sites use certs from less common overseas CAs.

• If you bump into a site of that sort after you’ve pruned
the trust anchor that would normally validate it, you (or
your users!) will then need to exercise your own best
judgment: is this a cert I want to permit, or not? Absent
extensive personal investigation, mistakes will inevitably be
made, both when it comes to accepting and rejecting certs
that you're shown. 72

If You Feel You Must Prune Trust Anchors
• One strategy that *might* work would be to compare the

trust anchors recognized by major operating systems and
applications, keeping only those that are common to all
members of that reference set. Put another way, if ALL
common operating systems and browsers trust a particular
CA, you might decide you might as well do so, too.

• However, if you do that, what's your plan for keeping that
set of local trust anchors current over time? Is trust
anchor maintenance really your favorite passtime?

• You also need to figure out what you're going to do if a
trust anchor that you're nervous about has intermediate
certs that are cross-certified by a trust anchor you do
like... this may be more complex than you might think!

• My recommendation? PLEASE resist the urge to manually
tweak the default operating system/browser trust anchors!73

Certificate Stapling
• As mentioned on the preceding slides, currently any CA you

trust can issue a seemingly valid certificate on behalf of
any domain. Wouldn't it be swell if sites could specify that
their site will always and only use certs from one vendor,
and that any cert that might be seen from some other
vendor should NEVER be trusted for their site?

• The Good News? This is precisely one of the use cases
described by the DANE effort in the IETF. See Section 3.1
of http://tools.ietf.org/html/draft-ietf-dane-use-cases-05

• The Bad News? The DANE work relies on deployment of
DNSSEC (which is only beginning in many parts of the net).

• At the risk of asking you to check and potentially work on
Yet Another Thing, how IS deployment of DNSSEC coming
at your campus? (Yes, this stuff really does all interlock
nicely, doesn't it?)

74

Another Risk: Compelled Certificate Creation Attacks

• There have been many reports in the media about
(potentially state-sponsored) cyber attackers aggressively
targeting cutting edge intellectual property, such as new
U.S. scientific discoveries or undisclosed inventions.

• We've all also heard repeated reports alleging that (some)
foreign governments routinely conduct cyber surveillance
of peaceful political and religious dissidents in the U.S.

• While I trust our government to abide by the rule of law
(e.g., acquiring court orders for any interceptions they may
conduct), I'm not sure I trust all foreign governments.

• Out of all the default certificate authorities in your web
browser, could there be at least *one* CA that's under the
influence or control of a foreign government? If so, we
need to worry about so-called "Compelled Certificate
Creation" attacks...

75

Compelled Certificate Creation Attacks

76

Secure Renegotiation: A More Mundane MITM Risk

• In 2009, it was discovered that SSL and TLS were
vulnerable to insecure protocol renegotiaton, potentially
enabling an entire class of MITM attacks against SSL/TLS
(see http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2009-3555)

• RFC 5746 (February 2010) described a protocol-level fix
for the insecure renegotiation, but many sites have neither
blocked renegotiation entirely (something of a blunt
weapon when it comes to addressing this issue), nor
implemented secure renegotiation (typically by updating
their web server AND SSL/TLS implementation).

• Remember: nearly 40% of all the higher ed web servers I
checked with the SSLlabs tool remain vulnerable to this
risk as of the time I originally made these slides during
the summer of 2011.

77

VI. Certificate Management

78

WHO Can Order Certs At Your Site?
• Typically, whether you intend for this to be true or not,

anyone who can monitor any one of a number of standard
role accounts (commonly this list is admin@domain,
administrator@domain, postmaster@domain,
hostmaster@domain, webmaster@domain), or anyone who is
listed in whois as a domain's tech or admin point of contact
for that domain, can get a "domain-validated" cert from
one or more certificate authorities.

• Like "make your own change" day at the store, this may
be popular with users, but not a practice that is
particularly security affirming, eh?

• I'd recommend implementing policies that firmly lodge
certificate procurement and distribution with a relatively
small cadre of individuals, not your postmaster, webmaster,
etc., but perhaps part of your security team.

79

Your School (Probably) Uses More Than One Domain

• I'd be willing to *bet* that your schools all use more than
one domain. For example, you may have one dot edu domain
you primarily use, and if you do your own DNS you may
have a pretty good idea of what servers exist in that
domian.

• However, I bet you also have a hodge podge of dot coms
or dot orgs or legacy dot edu domains in use by at least
some parts of your school.

• How do those certs for all THOSE domains get handled?
["Buy your own certs day!"]

• Is that how you expected this to all work? :-;
80

WHEN Do Certs Get Updated/Replaced?
• All too often, you will run into certificates that either have

expired, or are on the verge of expiring.
• Using user-generated called calls as a warning mechanism

that one of your certs needs to be replaced is not a
recommended and highly professional practice.

• Take advantage of scheduling tools to set up reminders for
when your certs are getting moderately close to expiring.
(Ninety days in advance might be a nice "early warning,"
and you should have a fallback notification at the thirty
day mark, just in case things "fall through the cracks").

• You might even want to get into a routine of replacing
your current certs with new certs every summer or winter
vacation as part of your scheduled preventive maintenance
during periods of low usage (much in the way you might
replace the batteries in your home smoke detectors).

81

What Duration Certificates Should You Buy?
• Assume you can buy certs with durations running from one

year to three years or even longer in some cases. (If your
CA is in the default Mozilla set of root trust anchors,
Mozilla requires revalidation of information included in SSL
certs at least every 39 months, see
https://wiki.mozilla.org/CA:Problematic_Practices)

• WHAT duration should you buy?
• The temptation will probably be to just buy the longest

duration cert you can get, thereby obtaining any multiyear
discount that you might be able to earn while also
minimizing ordering and installation hassles, but from a
security point of view, maybe that's less than ideal.

• Hypothetically, perhaps domain registration validity periods
should put an outer bound on certificate validity periods?
(Should a one year domain reg have a three year cert?)

82

Wildcard Certificates
• While you can buy an individual certificate for each host in

your domain, you can also buy multi-domain certs for
multiple hostnames, or even buy "wildcard" certs.

• For example, you could get a cert for server1.example.edu,
server2.example.edu, server3.example.edu, and
server4.example.edu or even a cert for *.example.edu

• Having one cert for all your hosts certainly streamlines
your certificate ordering process (and could also be cheap)

• However, as that cert gets passed out to sysadmin after
sysadmin for installation around campus, how secure will it
be? If any ONE of those hosts gets broken into, ALL hosts
will need to replace their now-compromised certificates.

• Wildcard certs also don't do a very tight job of binding a
server's identity to the credentials its using.

83

Signature Types/Lengths
• Certs are signed by certificate authorities. In the past,

some CAs may have used MD5-based signatures, or
relatively short 1024 bit signatures.

• These must be phased out/replaced. See
https://wiki.mozilla.org/CA:MD5and1024 and
www.incommonfederation.org/cert/doc/2048-bit-Certificates.pdf

• Note: this will most often come up as an issue for cert
renewals, where someone has long had a 1024 bit-signed
certificate, only to learn that it will not be able to be
renewed. If someone has had a 1024 bit-signed cert it will
need to be replaced with a 2048 bit cert (which will
require creation of a new key pair and a new CSR).

84

Server Gated Cryptography Certs
• Another legacy of the "bad old days" is "Step Up" or

"Server Gated Cryptography" (SGC) certs. SGC certs
were designed to accommodate users connecting from
cryptographically-crippled "export grade" browsers.
Those bad old days are long gone, yet some sites are still
using SGC certs (I wouldn't be).

• If users are continuing to use antique browsers that rely
on the availability of SGC, those browsers are inherently
insecure and those users should be encouraged to update
their browsers to something at least moderately current.

• A nice article on this topic is at
www.sslshopper.com/article-say-no-to-sgc-ssl-
certificates.html 85

Certificate Validity and Revocation
• One of the most subtle and important certificate-related

topics is handling certificate validation and revocation.
• Has your campus devoted any attention to making sure

that users' browsers "do the right thing" when it comes
to checking OCSP (online certificate status protocol,
RFC2560) and CRLs (certificate revocation lists, RFC5280)?
OCSP and CRLs are supposed to be used to signal the
revocation status of certs to browsers and other apps.

• Unfortunately, some browsers don't check OCSP/CRLs!
• If revocation checking isn’t done, users risk trusting a

revoked certificate, which is generally a pretty bad idea.
• Because support for OCSP and CRLs may vary in browsers,

I recommend encouraging users to use a current version
of Firefox, since it does a good job of managing use of
OCSP and CRLs by default. 86

VII. "Tell Me About Extended Validation
Certs!"

87

A Sample Secure Web Page

• In Firefox, a variety of user interface elements are meant
to "cue" or help the user to notice that this is a special
secure web page, and not just a "regular" one. Notice:
-- the blue field with the domain in the address bar
-- the https URL prefix (with an "s", standing for "secure")
-- the little padlock on the bottom margin of the window

88

Those Cues are Subtle, Can Be Overlooked
or Faked, And May Confuse Some Users

• Many folks won't even notice that the "s" on https, or the
presence of that little padlock, when visiting a secure page.

• Sometimes, phishers attempt to trick users by adding a
"padlock" favicon.ico (http://en.wikipedia.org/wiki/Favicon)
to a web site they're abusing, hoping that users will think
that the padlock icon they're seeing means that this is a
secure site, even though it isn't.

• The prominent blue-colored area near the web address is
hard to overlook, but will users understand what that color
is meant to connote?

• What if the user was curious, and wanted more
information? For example, what if users started clicking on
some of those user interface cues, looking for more
information? 89

More Information *IS* Potentially Available...
• While looking at that web site in Firefox, users can click on

the blue area to the left of the web address, asking to see
"More Information" and then asking to "View Certificate:"

90

But Users Usually Won't Bother Looking at Cert
Info

• After all, why should they? Secure web sites "work" even
if users doesn't look at the certs, eh?

• Also, certificate-related information panes prominently
feature all sorts of obscure/intimidating/cryptic numbers
and even basic vocabulary that gets used in unexpected or
confusing ways (for example, consider the terms "Common
Name" or "Fingerprint" as shown on the preceding slide)

• Even if a user did look at that information, but then had
questions, where would they go to get those questions
resolved? Secure sites typically are pretty much a
"take it or leave it" proposition, right? You really only have
two choices: use it, or don’t use it.

91

Users May Have Little Choice But to Accept
• A recent study by Holz, Braun, Kammenhuber and Carle*

found that less than 1-in-5 of the certificates they
observed had both a correct host name and a valid
certificate chain, thereby allowing the cert to be
determined to be cryptographically valid.

• The rest of the time, one of the following is true:
1) appropriate certificate checks aren't occurring, 2) users
are proceeding notwithstanding substantial cert problems,
or 3) an awful lot of sites using certs aren't accessible!

• In truth, the problem may even be worse than that – not
only do users accept certs they shouldn't, they routinely
draw unsound inferences from a site's use of an SSL cert...

*�Preprint shared on the Randombit Cryptography mailing
list 29 Sep 2011, see
http://lists.randombit.net/pipermail/cryptography/2011-
September/001658.html

92

The Default Mental Thought User Process
• Many users have been implicitly or explicitly mis-trained,

and now -- almost as an article of faith -- many seem to
incorrectly believe that:
 “As long as you see https in the address bar… or you
 see that little padlock down on their web browser's
 bottom margin… or you see the blue colored field up
 near the web address… Then you can proceed to
 'safely’ enter passwords, credit cards, etc., there.”

• That is, of course, completely crazy.
• Peter Gutmann of the University of Auckland has some

classic examples of “interesting” sites that have valid certs
(and some real “mainstream” sites that have invalid ones) in
“PKI as Part of An Integrated Risk Management Strategy
for Web Security,” EuroPKI 2011,
http://www.cs.auckland.ac.nz/~pgut001/pubs/pki_risk.pdf

93

What Certificates Can (and Can't) Do
• Remember, securing web sites through use of cryptographic

certificates was meant to accomplish three things:
-- protect your information from eavesdropping
-- protect your information from tampering
-- reassure you that you're dealing with the site you really
 wanted to deal with, and not a fake/imposter site

• That's *NOT* what users think they're getting from a site
secured with a certificate.

• Users have a far simpler (wrong!) notion:
SSL "Secured" Site? --> The Site Must Be Trustworthy
(fair, honest, able to be relied on, etc)

• SSL certs are actually like the services of a notary public.
A notary public certifies that she saw you sign, and that
your government ID matches your name and signature, NOT
that the contract she saw signed was worthwhile one. 94

Put Simply: Certs Are NOT
About “Reputation" or "Trust"

• Good people and organizations can get certificates.
Really bad people and organizations (including criminals!)
can also get (at least some types of) certificates (see
Gutmann’s talk, mentioned previously in this section).

• It would be, and is, a critical/terrible mistake to assume
that just because a web site has a valid SSL certificate,
that that site is trustworthy! Many users do NOT "get"
this, so this is a point worth stressing if you talk with them
about certs

• Technically, certs themselves don't even provide protection
against eavesdropping or tampering, that's actually done by
the cryptographic key pair that's behind or underneath the
certificate.

95

Certs Bind Identities (Of One Sort or
Another) To Cryptographic Key Pairs

• What are those “cryptographic key pairs” we just
mentioned?
Behind every certificate there lives:
-- a public key that can be freely shared with anyone, and
-- a corresponding (secret!) private key.

• The public key forms the foundation for each Certificate
Signing Request (CSR). The CSR gets forwarded to the
certificate authority (CA), which then validates the
identity of the requesting entity (one way or another),
issuing a certificate that cryptographically signs the public
key, binding the requesting entity's identity to it.

• What varies from cert type to cert type is the type and
thoroughness of the validation process that gets employed.
That validation can vary from extensive (in the case of EV
certs) to nothing at all (self-signed certs). 96

Four Levels of Identity "Validation"
1) "Self-Signed" certs: these certificates haven't been
validated by a broadly recognized certificate authority.
You have no assurance whatsoever that those cryptographic
credentials really belong to who you think they belong to.
Maybe they do, maybe they don't. You simply don't know.

 2) Domain Validation (DV) certs: an automated email with
a unique code gets sent to an email address associated
with the domain for which a cert has been requested. This
email
goes to a standard role account (such as postmaster) or
a point of contact address listed in the domain’s whois. The
certificate requesting party then follows the instructions in
that email ("click on this link") to demonstrate "control"
over that domain name. DV certs are probably the most
common type of SSL certificate. DV certs simply bind a
certificate to the applicant's domain name. 97

Four Levels of "Validation" (continued)
3) Organizational Validation (OV) certs: OV certs, such
as the ones that InCommon issues via Comodo, require a
more careful verification of the applicant's business identity
and applicant roles. Use of an OV cert will typically not
result in any prominent indicator or mark that signifies that
status in most browsers, although if you check the
certificate manually, you will normally see the organization
name (and not just a domain name) actually listed in the
cert.

 4) Extended Validation (EV) certs: Extended validation
certs are the least common sort of cert. Before an EV cert
gets issued, a more thorough investigation of the identity
of the applicant gets conducted per the requirement
developed by the Certificate Authority and Browser forum.
Sites that use an EV cert will display the organization's
name in a "green bar" in current generation web browsers.
EV certs are only available to companies in select
countries.

98

EV Cert Indications Vary
From Browser To Browser

99

Choice of A Cert Validation Type
• Why do some sites use self-signed certs, while others use

DV certs, OV certs, or EV certs? Three factors normally
drive site selection of one or the other: cost, convenience
and consumer confidence.

• Cost: self-signed certs are free. DV certs are quite cheap.
OV certs are usually more expensive (since they involve
manual processing/validation of applicant details). EV certs,
involving the most thorough review, are the most expensive.

• Convenience: You could make your own self-signed certs.
DV certs, since they are normally processed on a wholly
automated basis, can be issued in near real-time. OV certs
normally take longer (since they involve manual processing).
EV certs take the most time (and paperwork!) of all.

• Consumer Confidence: Hopefully this increases from self-
signed certs to DV certs to OV certs to EV certs.

100

EV's Role: Reversing A "Race To The Bottom"
• For a long time there weren't all these types of certs. In

the old days, there were only self signed certs, and
carefully verified commercial certs.

• Then certificate authorities began to compete on price. If
you're competing on price and have very thin profit
margins, you can't afford to do extensive validation of each
applicant and still make a profit. You need to substitute
automation -- and many CAs did. They began to verify that
you had control over a domain name, rather than that you
controlled a business entity. Importantly, in many ways,
these cheap DV certs had little that tangibly distinguished
them from higher quality/higher cost OV certs.

• Extended validation certificates were created in an
effort to claw back consumer confidence, particularly
for banks and other prime phishing targets. BUT...

101

102

Why The Slow EV Rollout? Issue One: Cost
• While EV certs do a nice job of potentially improving

confidence in critical sites, extended validation certificates
are still quite uncommon because they have traditionally
been expensive to obtain (hundreds of dollars per cert),
and many sites simply couldn't afford to obtain them.

• Some good news:

 Cost has ceased to be an impediment to deploying
 EV certificates, at least for sites participating in
 the InCommon Certificate Program, because
 extended validation certificates are included
 in the InCommon Certificate Program at no
 additional charge.

103

EV Issue Two: Paperwork
• Even though the InCommon Certificate program can make

cost a non-issue for Cert Service subscribers, getting
extended validation certs WILL still require your site to do
some paperwork, including typically producing a "lawyer
letter."

• Details of the restrictions associated with EV certs, and
what's required in terms of paperwork can be seen here:
https://www.incommon.org/cert/evcerts.html

• I wouldn't let the potential paperwork deter you from
applying for an EV cert – it really isn't THAT bad (and
besides, those of us in academia excel in processing
paperwork, right :-))

104

EV Issue Three: User Awareness
• The final issue that has inhibited EV cert adoption has

been a lack of user education and awareness.

• Even with a change in color on the browser address bar,
many users don't "get" what that color implies, or why
extended validation certificates are better than a regular
SSL certificate.

• Nonetheless, despite those issues, we ARE seeing higher
education sites deploying EV certificates.

• A few examples of universities that are using EV certs
follow...

105

A University Site That Uses an EV Cert

106

A Second Example Using An EV Cert

107

And A Third Example Using an EV Cert

108

And A Final Example Using an EV Cert

109

Is YOUR School Using EV Certs?
Should You Be?

• If you have a security-critical web site that collects/uses:

-- Passwords or cookies for authentication or “login”
-- Personally identifiable information (such SSNs)
-- Financially sensitive information (such as credit card info)
-- Medical information (e.g., HIPAA-covered information)
-- Grades or other FERPA-covered student records

Or, if you have sites that may be a priority target for
spoofing, such as wireless authentication or VPN sites, then
yes, I think you SHOULD be using Extended Validation
("green bar") certificates for those sites.

• "If it's a site that matters, GO GREEN!" 110

Coming Back to EV Issue 3 For A Second:
Have You Trained Your Users About EV Certs?
• It is probably unrealistic to expect users to know about

and understand extended validation certificates on their
own – you should consider an awareness program to help
make your users aware of the role and implications of
extended validation certificates when they encounter them.

• You should particularly train them that if they customarily
see a green bar cert for a critical site, but then one day
they suddenly don't -- STOP and find out what's going on!
Did they perhaps make a typo or otherwise accidentally go
to the wrong site? Or, is something sinister happening?

• EV certs have one other advantage: Criminals like to work
from the shadows and hide their identity so law
enforcement can't track them down and arrest them. It's
hard for a criminal to hide their ID AND obtain an EV cert.

111

Are EV Certs Cryptographically “Stronger?”

• No. EV certificates, just like self-signed certs, EV certs, or
OV certs, all have 2048 bit signatures these days. They are
not cryptographically stronger.

• EV certs ARE procedurally stronger when it comes to
establishing who’s “behind” those certificates.

• EV certs are also less common, which helps to reduce the
chance that a look-alike site will have a “green bar” cert
the way a real site might.

112

VIII. HTTP Strict Transport Security

113

Certificates: They're Not Just For
Critical Web Content Anymore

• For a long time, most sites only deployed certs for critical
content, leaving the vast majority of routine web traffic
flowing over the network unencrypted.

• Why? The usual answers (valid or not) were all or some of:
-- we do encrypt login info, that's the only real worry...
-- users don't care; why bother?
-- why buy expensive certs when they aren't needed?
-- it's a hassle obtaining, installing and maintaining certs
-- we don't want to have to accept the "performance hit"
 that comes with doing all that crypto!
-- debugging problems will be harder with encryption
-- encrypted traffic can't be cached or proxied
-- incoming encrypted traffic can't be scanned for malware
-- I'm too busy/I'll do it "real soon now"

114

Then, The World Encountered Firesheep...
• If you're not familiar with Firesheep, see

http://codebutler.com/firesheep (24 October 2010)
• Firesheep is an application that does a nice job of

demonstrating that encrypting just the user's login session
is not enough (at least if a web site relies on cookies for
authentication and access control): even if an attacker
couldn't capture your username and password, they could
still capture an unencrypted cookie, and after that, the
attacker would then have full control of your account.

• This wasn't a new vulnerability, but creation of Firesheep
made it apparent to everyone that this was a practical
(rather than theoretical) worry.

• The only real solutions? Don't rely on cookies to carry
critical security info -- or encrypt everything with https.

115

HTTP Strict Transport Security (HSTS)
• What we need is a way for sites to declare that ALL

traffic for their domain MUST be sent via https, and ONLY
https.

• If we just wanted to ENCOURAGE use of https on a site,
a formal protocol isn’t absolutely necessary. Any site could
simply decide to start using https to secure the web pages
on their site, and voila, it could be done. However, it's easy
for a user to accidentally request a page via http (instead
of https), or for a web programmer to mistakenly link to an
unencrypted local web page rather than an encrypted one.

• Fortunately, HSTS provides a way to say that a site MUST
use https only. See: "HTTP Strict Transport Security
(HSTS)," Hodges (Paypal), Jackson (CMU) & Barth (Google),
tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-
02 (expires February 6th, 2012) 116

Enabling HSTS
• Enabling HSTS on a web site that uses Apache is pretty

easily done, see the description at "Adding HTTP Strict
Transport Security (HSTS) to Apache Virtual Hosts,"
http://linux.dashexamples.com/2011/08/adding-http-strict-
transport-security-hsts-to-apache-virtual-host/

• The one required additional HSTS header must be sent via
an https: page – that header will be ignored if it is sent
via an unencrypted http page. As a result of that
requirement, and also due to limited browser support,
OWASP emphasizes use of a 301 permanent redirect
instead:
www.owasp.org/index.php/HTTP_Strict_Transport_Security
(note that while approach works with any browser, it
doesn’t directly preclude use of self-signed certs or some
other corner cases that HSTS explicitly addresses)

117

Browser Support for HSTS
• To be candid about one disappointing point: browser

support for HSTS is not currently really where I’d like it to
be, and that's a shame, because browsers play a key role in
recognizing and enforcing use of the HSTS protocol.

• The good news? HSTS *is* at least currently enabled in
recent versions of Firefox and Chrome (e.g., see for
example http://www.chromium.org/sts). Another helpful
point: even if you use a browser that doesn’t support HSTS,
that browser's non-support of HSTS won't actively break
anything.

• The bad news? There are major/important browsers that
don't currently have support for HSTS: Internet Explorer,
Safari, and Opera do not have support for HSTS at this
time. (Likewise, I don't believe that HSTS has made it into
many mobile device web browsers). Talk to your vendors!

118

Name-Based Virtual Hosting and https Usage
• One other consideration: when it comes to regular (non-

https) hosting, many sites use name-based virtual hosting.
In name-based virtual hosting, dozens or even hundreds of
domains may get hosted on a single shared IP (e.g., see
httpd.apache.org/docs/2.2/vhosts/name-based.html)

• Traditionally, secure web sites needed IP-based hosting,
with each secure web site residing on a dedicated address.
If you have lots of secure web sites, doing IP-based
hosting could rapidly deplete your pool of available
addresses.

• Server Name Indication ("SNI") eliminates that requirment
if you're running a current secure web server and browser.
See
http://wiki.apache.org/httpd/NameBasedSSLVHostsWithSNI

• Caution: Some browsers on some operating systems may
not have support for SNI. 119

Mixed Scripting and Mixed Display
• While you're tightening things up and promoting use of

https everywhere, you may particularly want to note the
problem of "mixed scripting," where an https page loads a
script, cascading style sheet or plugin resource over an
insecure (http, instead of https page).

• Also bad: when an https page loads an image, iframe or
font over http, a related if somewhat less serious problem
that's sometimes called "mixed display".

• A nice summary posting on this issue is available at "Trying
to End Mixed Scripting Vulnerabilities," June 16, 2011,
http://googleonlinesecurity.blogspot.com/2011/06/trying-to-
end-mixed-scripting.html (the comments to that post bring
up some interesting examples of prominent sites that
apparently continue to have issues in this regard)

120

Quick "Take Aways" For HSTS
• The old default: unencrypted http for most web pages,

with SSL/TLS security only where it's "absolutely needed"
• The new default: plan on using encryption (https)

everywhere.

• Things to check:
-- Can my web server software support SNI? If not, do I
 have enough IPv4 address space to do IP-based hosts?
 Should I be requesting more?
-- Are we recommending a browser that supports SNI (as
 well as HSTS)? Are there any old legacy Windows XP
 user desktops that we might need to get updated?
-- If we moved to HSTS, would we encounter mixed
 scripting or mixed display issues?

121

IX. Speaking of Browsers...

122

We've Been Largely Talking About What We
Should Be Doing On The Server Side,
But What About Your Users' Browsers?

• Some recommendations won't exactly be surprising.
• For example, when it comes to dealing with secure sites,

just as with pretty much anything else, browsers need to
be kept patched up-to-date, including any browser plugins.
Encourage use of Secunia PSI/CSI/OSI (see secunia.com)
or at least http://www.mozilla.org/en-US/plugincheck/

• You may wonder what cert-related stuff needs patching or
updating in the browser itself. Well, Browsers include lists
of trusted root certificate authorities, and they also
include hardcoded blacklists of certificates which are
known to be untrustworthy. When a DigiNotar-type
incident occurs, browsers need to update those lists. See,
for example, Firefox's list of recent security updates... 123

Firefox's List of Recent Security Issues

124

Example of One of Those Specific Advisories

125

What About Smart Phone/Tablet Browsers?

126

Detecting Changes in Cert Usage on Firefox
• If you routinely use ssh, you know that if/when a server

changes its keys, ssh notices and warns you that
something's awry. Paraphrasing: "The credentials you saw
last time are not the same as the credentials you're being
given this time. Watch out! Someone may be doing a man-
in-the-middle attack against you!" That's potentially a very
helpful alert.

• A similar process doesn't happen when it comes to web
browsers and secure web sites. You might see one
certificate today, and a completely different certificate
tomorrow, and as long as both are validly signed, your
browser won't complain.

• CertificatePatrol is a Firefox browser plugin that helps
expose those sort of changes for the https websites you
visit. 127

128

129

An Example of
An Anomaly
Detected by
CertificatePatrol:
The Googleplex,
Temporarily
Out of Sync?

Moxie Marlinspike's "Convergence"
• You may also hear about Convergence, a Firefox add-in

that uses a network of "notaries" who collectively and
anonymously tell you if what you're seeing for a site's
certificate is consistent with what they've seen for a site's
certificate. (see http://convergence.io/index.html)

• This sort of check is helpful if your worry is that someone
may be trying to do a local "man-in-the-middle" attack
against you. If they attempt to do this, the cert you'll see
will differ from the cert that the rest of the world will
see, and Convergence will hopefully alert you to that.

• Some in the community have expressed concerns about
the Convergence model's scalability; see, for example: "Why
Not Convergence?"
http://www.imperialviolet.org/2011/09/07/convergence.html

• I suggest that sites just test/evaluate Convergence for
now.

130

Browser Exploit Against SSL/TLS Tool (BEAST)

• The technical media has been all atwitter recently about
BEAST, a browser-based attack exploiting long-known
(heretofore theoretical) vulnerabilities that exist in widely
deployed and routinely used versions of SSL/TLS.

• Unfortunately, the community still hasn't really converged
around a practically workable solution to this vulnerability
yet. One of the nicest summaries I've seen of what browser
vendors are thinking about is: "Browsers Tackle the 'BEAST'
Web Security Problem," September 29th, 2011,
http://news.cnet.com/8301-27080_3-20113530-245/
browsers-tackle-the-beast-web-security-problem/
(or try http://tinyurl.com/beast-summary if you prefer).

• For now, I think the best advice I can give you on this one
is to continue to monitor this issue. Currently there are
LOTS of bad/inadequate answers, unfortunately.

131

Thanks for the Chance To Talk Today!

Are there any questions?

132

